Analysis of the fractal structures in chaotic processes: Time series of the Danube river’s dayly runoff and the extremal hydrological events

Authors: N.G. Serbov, A.A. Svinarenko, O.Yu. Khetselius, A.K. Balan

Year: 2015

Issue: 19

Pages: 83-87

Abstract

This paper goes on our investigations of the fractal structures in the chaotic and turbulent processes and connected with a great importance the experimental and theoretical studying of the non-linear dynamical systems with aim to discover the fractal features and elements of dynamical chaos. In this paper on the basis of wavelet analysis and multifractal formalism it is carried out an analysis of fractal structures in the chaotic processes (the time series of the daily runoffs for the Danube river, 1989-1998 years) and the spectrum of the fractal dimensions has been computed. It is carried out numerical modelling and fulfilled a comparison of theoretical data on runs with observed ones on the basis of the new approach to modeling the extremal hydrological events (flood etc.). The latter is based on the multi-factor systems formalism, in particular, system model with many inputs and one output.

Tags: chaotic processes; fractal dimensions; fractals structures; hydrological systems; the extremal hydrological events

Bibliography

  1. Svinarenko A.A., Khetselius O.Yu., Mansarliysky V.F., Romanenko S.I. Analysis of the fractal structures in turbulent processes. Ukr. gìdrometeorol. ž – Ulrainian Hydrometeorology Journal, 2014, no. 15, pp. 74-78.
  2. Khetselius O.Yu., Svinarenko A.A. Analysis of the fractal structures in wave processes. Vìsn. Odes. derž. ekol. unìv.– Bulletin of Odessa state environmental university, 2013, vol. 16, pp. 222-226.
  3. Abarbanel H.D.I., Brown R., Sidorowich J.J., Tsimring L.Sh. The Mandelbrot B. Fractal geometry of nature.Moscow: Mir, 2002.
  4. Schertzer D., Lovejoy S. Fractals: Physical Origin and Properites. N.-Y.: Plenum Press, 1990, pp. 71-92. (Ed.: Peitronero L.)
  5. Zaslavsky G.M. Stochasticity of dynamical systems. Moscow: Nauka, 1998.
  6. Zosimov V.V., Lyamshev L.M. Fractals in wave processes. Phys.Uspekhi, 1995, vol.165, pp. 361–402.
  7. Grassberger P., Procaccia I. Measuring the strangeness of strange attractors. Physica D., 1983, vol. 9, pp. 189-208.
  8. Kaplan J.L., Yorke J.A. Chaotic behavior of multidimensional difference equations. Functional differential equations and approximations of fixed points. Lecture Notes in Mathematics. Berlin: Springer, 1979, no. 730, pp. 204-227. (Eds: H.-O. Peitgen, H.-O. Walter)
  9. Packard N.H., Crutchfield J.P., Farmer J.D., Shaw R.S. Geometry from a time series. Phys. Rev. Lett, 1980, vol. 45, pp. 712-716.
  10. Schreiber T. Interdisciplinary application of nonlinear time series methods. Phys. Rep., 1999, vol. 308, pp. 1-64.
  11. Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992.
  12. Morlet J., Arens G., Fourgeau E., Giard D. Wave propagation and sampling theory. Geophysics, 1982, vol.47, pp. 203-236.
  13. Nason G., von Sachs R., Kroisand G. Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum. J.Royal Stat.Soc., 2000, vol. B62, pp. 271-292.
  14. Glushkov A.V., Khokhlov V.N., Svinarenko A.A., Bunyakova Yu.Ya., Prepelitsa G.P. Wavelet analysis and sensing the total ozone content in the earth atmosphere: Mycros technology “Geomath”. Sensor Electr. and Microsys.Techn., 2005, vol.2(3), pp. 51-60.
  15. Glushkov A.V., Khokhlov V.N., Tsenenko I.A. Atmospheric teleconnection patterns: wavelet analysis. Nonlin. Proc.in Geophys., 2004, vol. 11, no. 3, pp. 285-293.
  16. Glushkov A.V., Loboda N.S., Khokhlov V.N., Lovett L. Using non-decimated wavelet decomposition to analyse time variations of North Atlantic Oscillation, eddy kinetic energy, and Ukrainian precipitation. Journal of Hydrology. Elsevier, 2006, vol. 322, no. 1-4, pp. 14-24.
  17. Sivakumar B. Chaos theory in geophysics: past, present and future.Chaos, Solitons & Fractals, 2004, vol. 19, pp. 441-462.
  18. Svoboda A., Pekarova P., Miklanek P. Flood hydrology of Danube between Devin and Nagymaros in Slovakia.- Nat. Rep.2000, UNESKO.-Project 4.1. Intern.Water Systems. 2000. 96 p.
  19. Pekarova P., Miklanek P., Konicek A., Pekar J. Water quality in experimental basins. -Nat. Rep.1999 of the UNESKO.-Project 1.1. Intern.Water Systems., 1999. 98 p.
  20. Balan A.K.,Systems Approach in hydrology: Extremal Hydrological Events and Effect of Changes in Hydrospheres State. Proc. Intern. Conf. “Ecology of Siberia, the Far East and the Arctic”. SD RAN, 2001, p. 133.
  21. Glushkov A.V., Balan A.K., Multifractal approach for modeling flow and short-term hydrological forecasts (for example, r. Danube). Meteorology, Climatology and Hydrology, 2004, no. 48, pp. 392-396.
  22. Balan A.K. Method multifactorial system modeling in problems of calculation extremal hydrological phenomena. Meteorology, Climatology and Hydrology, 2002, no. 45, pp. 147-152.
  23. Glushkov A.V. Khokhlov V.N., Serbov N.G., Balan A.K., Bunyakova Y.Y., Balanyuk E.P. Low-dimensional chaos in the time series of concentrations of pollutants in the atmosphere and hydrosphere. Vìsn. Odes. derž. ekol. unìv.– Bulletin of Odessa state environmental university, 2007, no. 4, pp. 337-348.
Download full text (PDF)