Non-equilibrium Green’s functions method in matrix representation. 2. Model transport problems

Authors: Yu.A. Kruglyak, T.V. Kryzhanovskaya

Year: 2015

Issue: 19

Pages: 201-209


Non-equilibrium Green’s functions method is applied to model transport problems for 1D and 2D uniform conductors using the nearest neighbor orthogonal tight-binding approximation in the frame of the «bottom – up» approach of modern nanoelectronics.
First of all we discuss the construction of the contact matrices of self-energies. The basic idea is that infinitely long conductor described by the Hamiltonian [H] is replaced by a conductor of the finite length described by the matrix [H + Σ1 + Σ2] with the open boundary conditions at the ends meaning “good” contacts, which do not create the reflected streams at its ends. Further we discuss 1D ballistic conductor, a 1D conductor with a single scattering center, then 2D conductor is modeling and explanation is given to the steplike dependence of the transmission coefficients over the energy, and finally there is given the representation of 2D/3D conductor in the form of parallel 1D conductors, which is not only physically correct but also extremely useful in interpreting experimental data.
In summary the physical adequacy of the Huckel approach is stated in the framework of the method of nonequilibrium Green’s functions.

Tags: 1D conductor; 2D conductor; bottom – up; conductor modeling; molecular electronics; nanoelectronics; nanophysics; NEGF method; quantum transport


  1. Kruglyak Yu.A., Kryzhanovskaja T.V. Metod neravnovesnyh funkcij Grina v matrichnom predstavlenii. 1. Teoreticheskie osnovy [Non-equilibrium Green’s functions method in matrix presentation. 1. Theoretical basics]. – Vіsnik Odes’kogo derzh. ekologіchnogo un-tu – Vìsn. Odes. derž. ekol. unìv., 2014, no 19, pp. 175 – 192.
  2. Datta Supriyo. Lessons from Nanoelectronics: A New Perspective on Transport. Hackensack, New Jersey: World Scientific Publishing Company, 2012, 474 p.;
  3. Kruglyak Yu.A., Kruglyak N.E. Uroki nanojelektroniki [Lessons of Nanoelectronics]. 1 – 3. Fizicheskoe obrazovanie v vuzah – Physics in Higher Education, 2013, V. 19, no 1 – 3.
  4. Kruglyak Yu.A., Kvakush V.S., Djadjusha G.G., Hil’chenko V.I. Metody vychislenij v kvantovoj himii. Raschet π-jelektronnoj struktury molekul prostymi metodami molekuljarnyh orbitalej [Computational methods in quantum chemistry. Calculation of π-electronic structure of molecules by simple molecular orbital methods]. Kiev, 1967, 150 p.
  5. Kruglyak Yu.A., Ukrainsky I.I. Study of the electronic structure of alternant radicals by the DODS method. Intern. J. Quantum Chem, 1970, V. 4, no 1, pp. 57 – 72.
  6. Ukrainskij I.I., Kruglyak Yu.A. Izuchenie jelektronnoj struktury al’ternantnyh radikalov metodom rasshheplennyh orbitalej [Study of electronic structure of alternant radical by splited orbitals method]. Ukr. Fiz. Zhurnal – Ukr. Phys. J, 1970, V. 15, no 7, pp. 1068 – 1081.
  7. Kventsel G.F., Kruglyak Yu.A. Local Electronic States in Long Polyene Chains. Theor. Chim.Acta, 1968, V. 12, pp. 1 – 17.
  8. Strіha M.V. Fіzika grafenu: stan і perspektivi [Physics of Gra-phene: Present Status and Perspectives]. Sensor Electronics Microsyst. Techn., 2010, V. 1(7), no 3, pp. 5 – 13.
  9. Kruglyak Yu.A., Kruglyak N.E. Metodicheskie aspekty rascheta zonnoj struktury grafena s uchetom σ–ostova. Teoreticheskie osnovy [Methodical Aspects in Computation of Graphene Band Structure with an Account of σ-Core. Theoretical Basis]. – Vіsnik Odes’kogo derzh. ekologіchnogo un-tu – Vìsn. Odes. derž. ekol. unìv., 2012, no 13, pp. 207 – 218.
  10. Kruglyak Yu.A., Dyadyusha G.G. Torsion Barriers of End-Groups in Cumulenes. I. General Consideration. Theor. Chim.Acta, 1968, V. 10, pp. 23 – 32.
  11. Kruglyak Yu.A., Dyadyusha G.G. Torsion Barriers of End-Groups in Cumulenes. II. Results of Calculations and Discussion. Theor. Chim.Acta, 1968, V. 12, pp. 18 – 28.
  12. Kruglyak Yu.A., Djadjusha G.G. O povorotnyh bar’erah koncevyh grupp v organicheskih kumulenah [On rotational barriers of end-groups in organic cumulenes]. Teor. jeksper. Himija – Teor. eksper. Chem., 1968, V. 4, no 4, pp. 431 – 437.
  13. Kruglyak Yu.A., Kruglyak N.E., Strikha M.V. Uroky nanoelektroniky: vynyknennya strumu, formulyuvannya zakonu Oma i mody providnosti v kontseptsiyi «znyzu – vhoru» [Lessons of Nanoelectronics: Current generation, Ohm’s Law Formulation and Conduction modes in «Bottom – Up» Approach]. Sensor Electron-ics Microsys. Tech., 2012, V. 9, no.4, pp. 5 – 29.
  14. van Wees B.J., van Houten H., Beenakker C.W.J., Williamson J.G., Kouwenhoven L.P., van der Marel D., Foxon C.T. Quantized Conductance of Point Contacts in a Two-Dimensional Electron Gas. Phys. Rev. Lett, 1988, V. 60, no 9, pp. 848 – 850.
  15. Wharam D.A., Thornton T.J., Newbury R., Pepper M., Ahmed H., Frost J.E.F., Hasko D.G., Peacock D.C., Ritchie D.A., Jones G.A.C. One-Dimensional Transport and the Quantisation of the Ballistic Resistance. J. Phys. C: Solid State Phys, 1988, V. 21, no 8, pp. 209 – 214.


Download full text (PDF)