Spectroscopy of pionic atoms and effects of strong pion-nucleon interaction

Authors: O.Yu. Khetselius, I.N. Serga, D.E. Sukharev, A.N. Shahman

Year: 2015

Issue: 19

Pages: 195-200


It is presented an effective relativistic approach to the description of the energy and spectral characteristics of the pion atoms, based on the Klein-Gordon-Fock equation, model of optimized optical strong pion-nucleon interaction potential and method of the relativistic many-particle perturbation theory with the “0” Hamiltonian of the Dirac- Breit -Kohn-Sham approximation ( approximation to the formal precision QED perturbation theory) and correct accounting for the relativistic, radiation QED effects, the finite size nuclear effects plus the nuclear quadrupole deformation correction and electron shielding effect (electromagnetic unit). The bare interaction potential in the system is represented as the sum of the optical strong π– N interaction potential, relativistic Coulomb potential describing the interaction of the pion with the nucleus as amended by the Breit-Rosenthal-Crawford-Schawlow correction on the final size of a nucleus, generalized radiation potential, taking into account the main QED effect of vacuum polarization, etc., and the self-consistent potential of the surviving electron shells. For a number of heavy π– А, including, 181 Ta, 197Au,203Tl, 208Pb, 209Bi, etc there are presented the values of the shifts and widths for the 4f, 3d levels due to the strong π– N interaction, including the corrections, ‘directly related to the effect of the nuclear quadrupole deformation. For a number of π– А the data on the shifts and widths of the energy levels in a spectrum are presented for the first time.

Tags: Klein-Gordon-Fock equation; shift and width of energy levels due to the strong π- - N interaction; the optical potential of π- - N interaction


  1. Yang F., Hamilton J.H. (Eds). Fundamentals of nuclear models. Singapore: World Scientific, 2010. 740 p.
  2. Marciano W., White S. (Eds). Electromagnetic Probes of Fundamental Physics. Singapore: World Scient, 2003. 560 p.
  3. Ericson T., Ericson T., Weise W. Pions and Nuclei. Oxford: Clarendon, 1988. 320 p.
  4. Deloff A. Fundamentals in Hadronic Atom Theory. Singapore: World Sci., 2003. 352 p.
  5. Scherer S. Introduction to Chiral Perturbation Theory. Advances in Nuclear Physics. Springer (Berlin), 2003, vol.27, pp. 5-50. (Eds: Negele J.W., Vogt E.W.).
  6. Anagnostopoulos D., Biri S., Boisbourdain V., Demeter M., Borchert G. et al. -PSI Low-energy X-ray standards from pionic atoms. Nucl. Inst. Methods B., 2003, vol.205, pp. 9-18.
  7. Itahashi K., Berg G., Fujioka H., Geissel H., Hayano R. et al. First pionic atom spectroscopy at RIBF. EPJ Web of Conf., 2012, vol.37, pp. 01013-01036.
  8. Glushkov A.V. Relativistic Quantum Theory. Quantum, mechanics of Atomic Systems. Odessa: Astroprint, 2008. 900 p.
  9. Khetselius O.Yu. Hyperfine structure of atomic spectra. Odessa: Astroprint, 2008. 210 p.
  10. Khetselius O.Yu. Relativistic perturbation theory calculation of the hyperfine structure parameters for some heavy-element isotopes. Int. Journ. of Quantum Chemistry, 2009, vol.109, no. 14, pp. 3330-3335.
  11. Glushkov A.V, Khetselius O.Yu., Loboda A.V, Shakhman A.N., Svinarenko A.A., Florko T.A. Frontiers in Quantum Methods and Applications in Chemistry and Physics. Springer, 2014, vol.33, pp. 71-94.
  12. Glushkov A.V., Khetselius O.Yu., Svinarenko A.A. Relativistic theory of cooperative muon-gamma-nuclear processes: Negative muon capture and metastable nucleus discharge. Advances in the Theory of Quantum Systems in Chemistry and Physics. Springer, 2012, vol.22, pp. 51-70.
  13. Shakhman A.N. Relativistic theory of spectra of heavy pionic atoms with account of strong pion-nuclear interaction effects: new data for 175Lu, 205Tl, 208Pb. Photoelectronics, 2014, no. 23, pp. 71-75.
  14. Serga I.N., Dubrovskaya Yu.V., Shakhman A.N., Kvasikova A.S., Sukharev D.E. Spectroscopy of hadronic atoms: Energy shifts. Journal of Physics: C Ser. (IOP, London, UK), 2012, vol.397, pp. 012013-012018.
  15. Olaniyi B., Shor A, Cheng S., Dugan G., Wu C.S. Electric quadrupole moments and strong interaction effects in piomic atoms of 165Ho, 175Lu, 176Lu,179Hf, 181Ta. Nucl.Phys.A., 1982, vol. 403, pp. 572-588.
  16. Erikcson M., Ericson T., Krell M. Peculiarities of the pion-nuclear interaction. Phys.Rev.Lett, 1969, vol.22, pp. 1189-1193.
  17. Ericson M., Ericson T. Optical properties of low-energy pions in nuclei. Ann. Phys., 1966, vol.36, pp. 323-362.
  18. Tauscher L. Analysis of pionic atoms and the π-nucleus optical potential. Proc.of the International Sem. “π-Meson Nucleus Interaction”. CNRS-Strasbourg (France), 1971, pp.45-68.
  19. Batty C.J., Biagi S.F., Friedman E., Hoath S.D. Shifts and widths of 2p levels in pionic atoms. Phys. Rev. Lett, 1978, vol.40, pp. 931-935.
  20. Batty C.J., Friedman E., Gal A. Saturation effects in pionic atoms and the π-nucleus optical potential. Nucl. Phys.A., 1983, vol.402, pp. 411-428.
  21. Seki R., Masutani К., Jazaki К. Unified analysis of pionic atoms and low-energy pion-nuclear scattering. Hybrid analysis. Phys. Rev.C., 1983, vol.27,. pp. 1817-2832.
  22. Rowe G., Salamon M., Landau R.H. Energy-dependent phase shift analysis of pion-nucleon scattering below 400 MeV. Phys. Rev. C., 1978, vol.18, pp. 584-596.
  23. Backenstoss G. Pionic atoms. Ann.Rev.Nucl.Sci., 1970, vol.20, pp. 467-510.
  24. Indelicato P., Trassinelli M. From heavy ions to exotic atoms. arXiv:physics, 2005, vol.1, pp. 0510126-0510141.
  25. Santos J., Parente F., Boucard S., Indelicato P. Desclaux J.X-ray energies of circular transitions and electron scattering in kaonic at-oms. Phys.Rev.A., 2005, vol.71, pp. 032501.
  26. Mitroy J., Ivallov I.A. Quantum defect theory for the study of hadronic atoms. J. Phys. G. Nucl. Part. Phys, 2001, vol.27, pp. 1421–1433.
  27. Anagnostopoulos D., Gotta D., Indelicato P., Simons L.M. Low-energy X-ray standards from hydrogenlike pionic atoms. arXiv:physics, 2003, vol.1, pp. 0312090-0312097.
  28. Nagels M.M., de Swart J., Nielsen H. et al. Compilation of Coupling Constants and Low-Energy Parameters. 1976 Edition. Nucl.Phys.B., 1976, vol.109, pp. 1-90.
  29. Lauss B. Fundamental measurements with muons -View from PSI. Nucl.Phys.A., 2009, vol.827, pp. 401-407. PSI experiment R-98.01, http://pihydro gen.psi.ch
  30. CERN DIRAC Collaboration, “Search for long-lived states of π+π– and πK atoms”, CERN-SPSLC-2011-001 SPSLC-P-284-ADD. 2011. 22 p.
  31. CERN DIRAC Collaboration, „Status report of DIRAC for the SPSC meeting of March 2011”, CERN-SPSC-2011-013 ; SPSC-SR-081. 2011. 32 p.
  32. Itoh1 S., Berg G., Geissel H., Hayano R., Inabe Itahashi K. Precision spectroscopy of pionic atom at RIKEN-RIBF. Proc. of the XIV International Conference on Hadron Spectroscopy. Munich (Germany), 2011, p. 4.
  33. Ishiwatari T. Silicon drift detectors for the kaonic atom X-ray measurements in the SIDDHARTA experiment on behalf of the SIDDHARTA Collaboration. Nucl. Instr. and Methods in Phys. A: Accelerators, Spectrometers, Detectors, 2007, vol.581, pp. 326-329.
Download full text (PDF)