Electric current and the second law of thermodynamics in the «bottom – up» concept of nanoelectronics

Authors: Kruglyak Yu.A., Remenyak L.V.

Year: 2016

Issue: 20

Pages: 91-109

Abstract

Within the «bottom – up» concept of modern nanoelectronics flows of electrons and heat through a conductor taking into account a respective environment are studied and equilibrium thermodynamics of an energized conductor is developed with emphasis of the role of the Fock states in such concept, accumulation of information in a non-equilibrium state is discussed together with a detailed analysis of the model of information-driven battery and its connection with the Landauer principle on minimum amount of energy required to erase one bit of information which was experimentally proved recently. The concept of quantum entropy is introduced and some aspects of its application are discussed, and topicality of integration of spintronics and magnetronics in connection with upcoming transfer to the spin architecture of computing devices is emphasized. Also a question with respect to possibility of electron cloning in a certain state in the form of numerous identical electrons with the same wave functions is discussed. There are no theorems prohibiting such cloning. It is only necessary to inject numerous electrons prepared in the same way and then to carry out competent processing of measured results. All these issues are dealt by rapidly developing quantum informatics. But it is already obvious that the spin of an electron in comparison with its charge opens up qualitatively new perspectives for information processing.

Tags: information capacity; Landauer principle; nanoelectronics; nanophysics; resistor thermodynamics

Bibliography

  1. Kruglyak Yu.A., Kruglyak N.E., StrikhaM.V. Uroky nanoelektroniky. Vynyknennya strumu, formulyuvannya zakonu Oma i mody providnosti v kontseptsiyi «znyzu – vhoru» [Lessons of Nanoelectronics: Current generation, Ohm’s Law Formulation and Conduction modes in «Bottom – Up» Approach]. Sensor Electronics Microsys. Tech, 2012, vol.9, no.4, pp. 5-30.
  2. Kruglyak Yu.A., Strikha M.V. Uroky nanoelektroniky. Rol elektrostatyky i kontaktiv v kontseptsii «znyzu –vhoru» [Lessons of nanoelectronics: The role of electrostatics and contacts in “bottom – up” approach]. Sensor Electronics Microsys. Tech, 2014, 11, no.4, pp.5.
  3. Feynman R.P. Statistical Mechanics. San Francisco: Benjamin – Cummings,
  4. Kruglyak, Yu.A., Kruglyak, N.E., Strikha, M.V. Uroky nanoelektroniky: termoelektrychni yavyscha v kontseptsii «znyzu – vhoru» [Lessons of nanoelectronics: Thermoelectric phenomena in “bottom – up” approach]. Sensor Electronics Microsys. Tech, 2013, vol.10, no.1, pp. 6–21.
  5. Fock V. Konfigurationsraum und zweite Quantelung. Phys., 1932, vol.75, pp. 622-647.
  6. Mozdor E.V., Kruglyak Yu.A., Kuprievich V.A. Matrichnye elementy operatorov fizicheskih velichin na odnokonfiguratsionnyh funktsiyah radikalov [Matrix elements of the physical value operators on single configurational functions for radicals]. eksper. himija [Theoretical and Experimental Chemistry], 1969, vol.5, no.6, pp. 723–730.
  7. Kuprievich V.A., Kruglyak Yuri, Mozdor E.V. Full configuration interaction for the benzyl radical. Intern.J.Quantum Chem, 1970, vol.4, no.1, pp. 73-87.
  8. Kuprievich V.A., Kruglyak Yu.A., Mozdor E.V. The Configuration Interaction Method in the Second Quantization Representation. Chem.Acta, 1971, vol.43, pp.1-13.
  9. Kruglyak Yu.A., Mozdor E.V., Kuprievich V.A. Study of the Electronic Structure of Radicals by the CI Method. 1. Matrix Elements of the Physical Value Operators. Chem.Acta, 1971, vol.43, pp.15-23.
  10. Kruglyak Yuri A., Ukrainsky I.I. Study of the electronic structure of alternant radicals by the DODS method. J. Quantum Chem, 1970, vol.4, no.1, pp. 57–72.
  11. Ukrainsky I.I Kruglyak Yu.A. Izuchenie elektronnoy struktury al’ternantnyh radikalov metodom rasshcheplennyh orbitaley [A study of the electronic structure of radicals of alternative methods of splitting orbitals]. UFZH – Ukrainian Journal of Physics, 1970, vol.15, no.7, pp. 1068–1081.
  12. Kruglyak Yuri A., Dyadyusha G.G. Torsion Barriers of End-Groups in Cumulenes. I.General Consideration. Chim.Acta, 1968, vol.10, pp.23–32. Dill Ken A., Bromberg Sarina. Molecular Driving Forces: Statistical Thermodynamics in Biology, Chemistry, Physics, and Nanoscience, 2nd Edition. New York: Garland Science, 2010.
  13. Salahuddin Sayeef, DattaS. An All Electrical Spin Detector. Sixth IEEE Conference on Nanotechnology, 2006, 2, pp.834 – 837.
  14. Kruglyak Yu.A., Kruglyak N.E., Strikha M.V. Uroky nanoelektroniky: Spintronika v kontseptsii «znyzu – vhoru» [Lessons of nanoelectronics: spintronics in «bottom – up» approach]. Sensor Electronics Microsys. Tech, 2013, 10, no.2, pp.5–37.
  15. ShennonK. Raboty po teorii informacii i kibernetike [Works on information theory and cybernetics]. Moscow: Publishing House IL, 2002.
  16. Vol’kenshteynM.V.Entropiya i informatsiya [Entropy and informatsiya]. Moscow: “Nauka”, 2006.
  17. Landauer Rolf. Irreversibility and heat generation in the computing process. IBM J. Res. Dev, 1961, 5, pp.183–191.
  18. Bennett Charles Notes on Landauer’s principle. Reversible Computation and Maxwell’s Demon. History and Philosophy of Modern Physics, 2003, vol.34, pp. 501–510.
  19. Bérut Antoine, Arakelyan Artak, Petrosyan Artyom, Ciliberto Sergio, Dillenschneider Raoul, Lutz Eric. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature, 2012, 483, pp. 187–189.
  20. Leff H.S., Rex A.F. (Eds). Maxwell’s Demon 2 Entropy, Classical and Quantum Information, Computing. Bristol: Institute of Physics Publishing, 2003, 502 p.
  21. Datta S. Nanodevices and Maxwell’s Demon. Lecture Notes in Nanoscale Science and Technology. 2. Nanoscale Phenomena: Basic Science to Device Applications. Berlin: Springer, 2008 (Eds: Z.K. Tang, P. Sheng).
  22. Kruglyak Yu.A., Strikha M.V. Uroky nanoelektroniky: Metod nerivnovazhnykh funktsii Hrina v matrychnomu zobrazhenni. Teoriya [Lessons of nanoelectronics: non-e quillibrium Green’s functions method in matrix representation. Theory]. Sensor Electronics Microsys. Tech, 2013, 10, no.3, pp. 22–35.
  23. Kruglyak Yu.A., Strikha M.V. Uroky nanoelektroniky: Kvantova interferentsiia i defazirovka v metodi nerivnovazhnykh funktsii Hrina [Lessons nanoelectronics, quantum interference and defazirovka in the method of nonequilibrium Green’s functions]. Sensor Electronics Microsys. Tech, 2014,  11, no3. pp.5.
  24. Kruglyak Yu.A., Strikha M.V. Uroky nanoelektroniky: Transport spiniv v modeli NRFH i kvantovyi spinovyi efekt Khola v kontseptsii «znyzu – vhoru» [Uroky nanoelektroniky : Transport spiniv v modeli NRFG i kvantovyj spinovyj efekt Hola v koncepcii’ «znyzu – vgoru»]. Sensor Electronics Microsys. Tech, 2014, 11, no. 2, pp.5.
  25. Horodecki R., Horodecki P., Horodecki M., Horodecki K. Quantum entanglement. Rev. Mod. Phys, 2007, 81, no.2, pp. 865–942.
  26. Friedman Jonathan R., Sarachik Myriam P. Single-Molecule Nanomagnets. Rev. Cond. Matter Phys., 2010, vol.1, pp. 109-128.
Download full text (PDF)