Метод нерівноважних функцій Гріна у матричному зображенні. 1. Теоретичні основи

Автори: Кругляк Ю.О., Крижанівська Т.В.

Рік: 2014

Випуск: 18

Сторінки: 175-192

Анотація

В рамках концепції «знизу – вгору» наноелектроніки формулюється метод нерівноважних функцій Гріна в матрічному зображенні для задач квантового транспорту електронів.

Теги: багаторівневий резистор; знизу–вгору; метод НРФГ; молекулярна електроніка; нанофизика; наноэлектроника; однорівневий резистор

Список літератури

  1.  Кругляк Ю.О., Кругляк Н.Ю., Стріха М.В. Уроки наноелектроніки: виникнення струму, формулювання закону Ома і моди провідності в концепції «знизу – вгору» // Sensor Electronics and Microsystem Technologies. – 2012. – V. 9, N 4. – P. 5 – 29.
  2.  Кругляк Ю.О., Кругляк Н.Ю., Стріха М.В. Уроки наноелектроніки: термоелектричні явища в концепції «знизу – вгору» // Sensor Electronics and Microsystem Technologies. – 2013. – V. 10, N 1. – P. 6 – 21.
  3. Кругляк Ю.О., Кругляк Н.Ю., Стріха М.В. Уроки наноелектроніки: Спінтроніка в концепції «знизу – вгору» // Sensor Electronics and Microsystem Technologies. – 2013. – V. 10, N 2. – P. 5 – 25.
  4.  Datta Supriyo. Lessons from Nanoelectronics: A New Perspective on Transport. – Hackensack, New Jersey: World Scientific Publishing Company. – 2012. – pp. 474; www.nanohub.org/courses/FoN1, www.nanohub.org/courses/FoN2.
  5.  Datta Supriyo. Nanoelectronic devices: A unified view // The Oxford Handbook on Nanoscience and Nanotechnology: Frontiers and Advances, Eds. A.V. Narlikar and Y.Y.Fu. – Oxford University Press. – 2012. – V. 1, Chapter 1. – pp. 26.
  6. Datta Supriyo. Quantum Transport: Atom to Transistor. – Cambridge: Cambridge University Press. – 2005. – pp. 404.
  7.  Datta Supriyo. Nanodevices and Maxwell’s demon // Lecture Notes in Nanoscale Science and Technology, Vol. 2, Nanoscale Phenomena: Basic Science to Device Applications, Eds. Z.K. Tang and P. Sheng, Derlin: Springer. – 2008. – pp. 18
  8.  Caroli C., Combescot R., Nozieres P., Saint-James D. A direct calculation of the tunneling current: IV. Electron phonon interaction effects // J. Phys. C: Solid State Phys. – 1972. – V. 5. – P. 21.
  9.  Kubo R. Statistical-Mechanical Theory of Irreversible Processes.I. General Theory and Simple Applications to Magnetic and Conduction Problems // J.Phys.Soc. Japan. – 1957. – V. 12. – P. 570 – 586.
  10.  Sears F.W., Salinger G.L. Thermodynamics, Kinetic Theory, and Statistical Thermodynamics. – Boston: Addison-Wesley. – 1975. – pp. 331 – 336, 355 – 361.
  11.  Martin P.C., Schwinger J. Theory of many-particle systems. I // Phys. Rev. – 1959. – V. 115, N 6. – P. 1342 – 1373.
  12.  Kadanoff L.P., Baym G. Quantum Statistical Mechanics. – New York: W.A.Benjamin. – 1962.
  13.  Келдыш Л.В. Диаграммная техника для неравновесных процессов // ЖЭТФ. – 1964. – Т. – 47. – С. 1515 – 1527; Keldysh L.V. Diagram Technique for Non-Equilibrium Processes // Sov. Phys. JETP. – 1965. – V. 20. – P. 1018.
  14.  Landauer Rolf. Spatial variation of currents and fields due to localized scatterers in metallic conduction // IBM J. Res. Dev. – 1957. – V. 1, N 3. – P. 223 – 231.
  15.  Landauer Rolf. Electrical resistance of disordered onedimensional lattices // Philos. Mag. – 1970. – V. 21. – P. 863 – 867.
  16.  Landauer Rolf. Spatial variation of currents and fields due to localized scatterers in metallic conduction // J. Math. Phys. – 1996. – V. 37, N 10. – P. 5259.
  17. Datta S. Steady-state quantum kinetic equation // Phys. Rev., 1989. – V. B40. – P. 5830.
  18.  Datta S. A simple kinetic equation for steady-state quantum transport // J. Phys., Cond. Matt. – 1990. – V. 2. – P. 8023 – 8052.
  19.  Meir Y., Wingreen N.S. Landauer formula for the current through an interacting electron region // Phys. Rev. Lett. – 1992. – V. 68. – P. 2512 – 2515.
  20.  Datta Supriyo. Electronic Transport in Mesoscopic Systems.- Cambridge: Cambridge University Press. – 2001. – pp. 377.
  21.  Smit R.H.M., Noat Y., Untiedt C., Lang N.D., van Hemert M.C., van Ruitenbeek J.M. Measurment of the conductance of a hydrogen molecule // Nature. – 2002. – V. 419, N 3. – P. 906 – 909.
  22.  Buttiker M. Symmetry of Electrical Conduction // IBM J. Res. Dev. – 1988. – V. 32, N 3. – P. 317 – 334.
  23.  Anderson P.W. Absence of Diffusion in Certain Random Lattices // Phys. Rev. – 1958. – V. 109, N 5. – P. 1492 – 1505.
  24.  Anderson P.W. New method for scaling theory of localization. II. Multichannel theory of a “wire” and possible extension to higher dimensionality // Phys. Rev. B. – 1981. – V. 23, N 10. – P. 4828 – 4836.
Завантажити повний текст (PDF)