Chaos in temporal raws of dust concentrations in an atmosphere of industrial cities (on example of Odessa)

Authors: Glushkov A.V., Serga E.N., Bunyakova Yu.Ya.

Year: 2010

Issue: 09

Pages: 184-189

Abstract

On the basis of the correlation dimension method, in particular, the Grassberger-Procaccia algorithm it is carried out an analysis of the temporal raws of dust concentrations on two points of the Odessa city and calculated the correlation dimension spectrum. It has been proven availability of the chaos. The received data are agreed with the corresponding data on the Lyapunov dimension spectrum, Kalane-York dimension and Kolmogorov entropy.

Tags: atmospheric dust; chaos; correlation dimension method; temporal rows of concentrations; Одесса

Bibliography

  1. Abarbanel H.D.I., Brown R., Sidorowich J.J., Tsimring L.Sh., The analysis of observed chaotic data in physical systems // Rev. Mod. Phys.-1993.- Vol.65.-P.1331-1392.
  2. Sivakumar B. Chaos theory in geophysics: past, present and future // Chaos, Solitons & Fractals. – 2004.-Vol.19,№ 2.-P. 441-462.
  3. Chelani A.B. Predicting chaotic time series of PM10 concentration using artificial neural network // Int. J. Environ. Stud. – 2005.-Vol.62.-P. 181-191.
  4. Glushkov A.V., Bunyakova Yu.Ya., Khokhlov V.N., Prepelitsa G.P., Tsenenko I.A. Sensing air pollution field structure in the industrial city’s atmosphere: stochasticity and effects of chaos // Sensor Electr. and Microsyst. Tech.-2005.-№.1.-P. 80-84.
  5. Глушков А.В., Хохлов В.Н.,Сербов Н.Г, Бунякова Ю.Я, Балан А.К., Баланюк Е.П., Низкоразмерный хаос во временных рядах концентраций загрязняющих веществ в атмосфере и гидросфере// Вестник Одесск.гос.экололог.ун-та. – 2007.-N4.-C.337-348.
  6. Lorenz E.N. Deterministic nonperiodic flow // J. Atmos. Sci.-1963.-Vol.20.-P.130-141.
  7. Песин Я.Б. Характеристические показатели Ляпунова и гладкая эргодическая теория // Успехи мат. наук.-1977.-Т. 32,№ 1.-С. 55-112.
  8. Kaplan J.L., Yorke J.A. Chaotic behavior of multidimensional difference equations // Functional differential equations and approximations of fixed points. Lecture Notes in Mathematics No. 730 / H.-O. Peitgen, H.-O. Walter (Eds.). Berlin: Springer, 1979.-P.204-227.
  9. Grassberger P., Procaccia I., Measuring the strangeness of strange attractors // Physica D. – 1983.–Vol.9.–P.189-208.
  10. Sano M., Sawada Y. Measurement of the Lyapunov spectrum from a chaotic time series // Phys.Rev.Lett. – 1985.-Vol.55.-1082-1085.
  11. Rissanen J. Stochastic complexity in statistical inquiry.-Singapore: World Sci., 1989.-177P.
  12. Schreiber T. Interdisciplinary application of nonlinear time series methods // Phys. Rep. – 1999.-Vol.308.-P.1-64.
  13. Glushkov A.V., Khokhlov V.N., Prepelitsa G.P., Tsenenko I.A., Temporal variability of the atmosphere ozone content: Effect of North-Atalantic oscillation// Optics of atmosphere and ocean. – 2004.-Vol.14,N7.-p.219-223.
  14.  Tsonis A.A., Elsner J.B., Global temperature as a regulator of climate predictability // Physica D. – 1997.-Vol.108, № 1-2.- P.191-196.
  15. Islam M.N., Sivakumar B. Characterization and prediction of runoff dynamics: a nonlinear dynamical view // Adv. Water Res. – 2002.-Vol.25, № 2.-P.179-190.
  16. Glushkov A.V., Loboda N.S., Khokhlov V.N., Using meteorological data for reconstruction of annual runoff series over an ungauged area: Empirical orthogonal functions approach to Moldova-SW Ukraine region//Atmospheric Research (Elseiver).-2005.-Vol.77.-P.100-113.
  17. Glushkov A.V., Khokhlov V.N., Tsenenko I.A., Atmospheric teleconnection patterns and eddy kinetic energy content: wavelet analysis// Nonlinear Processes in Geophysics. – 2004.-V.11,N3.-P.285-293.
  18. Glushkov A.V., Loboda N.S., Khokhlov V.N., Lovett L., Using non-decimated wavelet decomposition to analyse time variations of North Atlantic Oscillation, eddy kinetic energy, and Ukrainian precipitation // Journal of Hydrology (Elsevier; The Netherlands). – 2006.–Vol. 322. –N1-4.–P.14-24.
  19. Glushkov A.V., Khokhlov V.N., Loboda N.S., Bunyakova Yu.Ya., Short-range forecast of atmospheric pollutants using non-linear prediction method// Atmospheric Environment (Elsevier; The Netherlands). – 2008.-Vol.42.-P. 7284–7292.
  20. Глушков А.В., Серга Э. Н., Бунякова Ю.Я., Хаос во временных рядах концентраций загрязняющих веществ в атмосфере (г. Одесса)//Вісник Одеського держ. екологічного ун-ту. – 2009.-N8.-C.233-238.
  21. Khokhlov V.N., Glushkov A.V., Loboda N.S., Relationship between SOI and global temperature anomalies: nonlinear approach// IOP Journ. of CS: Earth and Environmental Science, Spec. Issue: Climate Change – Global Risks, Challenges and Decisions. -2009.-Vol.6.-P. 072034.
  22. Packard N.H., Crutchfield J.P., Farmer J.D., Shaw R.S. Geometry from a time series // Phys. Rev.Lett. – 1980. – Vol. 45. – P. 712-716.
  23. Русов В.Д., Глушков А.В., Ващенко В.Н., Астрофизическая модель глобального климата Земли– Киев: Наукова Думка, 2005.–235С.
Download full text (PDF)