Analysis and forecast of anthropogenic impact on air basin of industrial city on basis of a chaos theory methods: Mathematical foundations

Authors: Glushkov A.V.

Year: 2013

Issue: 16

Pages: 5-11


In order to develop the theoretical foundations of the total approach to analysis and prediction of the influence of anthropogenic impact on the atmosphere of the industrial city and development of a new scheme of modelling the properties of fields of the polluting substances concentrations in the air basin by means of a chaos theory methods we present an analysis of the most effective tests on the presence of chaos in the system (air basin of industrial city) and improved method for reconstruction of the phase space.

Tags: air basin of the industrial city; analysis and prediction methods of the theory of chaos; pollutants; the ecological state of the; time series of concentrations


  1. Бунякова Ю.Я, Глушков А.В. Анализ и прогноз влияния антропогенных факторов на воздушный бассейн промышленного города.- Одесса: Экология, 2010.-256с.
  2. Глушков А.В., Хохлов В.Н.,Сербов Н.Г, Бунякова Ю.Я, Балан А.К., Баланюк Е.П. Низкоразмерный хаос во временных рядах концентраций загрязняющих веществ в атмосфере и гидросфере// Вестник Одесского гос. экологического ун-та.-2007.-N4.-C.337-348.
  3. Glushkov A.V., Khokhlov V.N., Prepelitsa G.P., Tsenenko I.A. Temporal variability of the atmosphere ozone content: Effect of North-Atlantic oscillation// Optics of atmosphere and ocean.-2004.-Vol.14.-Р.219-223.
  4. Sivakumar B. Chaos theory in geophysics: past, present and future // Chaos, Solitons & Fractals.- 2004.-Vol.19.-P.441-462.
  5. Chelani A.B. Predicting chaotic time series of PM10 concentration using artificial neural network // Int. J. Environ. Stud.-2005.-Vol.62.-P.181-191.
  6. Gottwald G.A., Melbourne I. A new test for chaos in deterministic systems// Proc. Roy. Soc. London. Ser. A. Mathemat. Phys. Sci.- 2004.-Vol.460.-P.603-611.
  7. Packard N.H., Crutchfield J.P., Farmer J.D., Shaw R.S. Geometry from a time series// Phys. Rev. Lett. -1980.-Vol.45.-P.712-716.
  8. Sauer T., Yorke J., Casdagli M. Embedology// J. Stat. Phys.-1991.-Vol.65.-P.579-616.
  9. Abarbanel H.D.I., Brown R., Sidorowich J.J., Tsimring L.Sh. The analysis of observed chaotic data in physical systems // Rev. Mod. Phys.-1993.-Vol.65.- P.1331-1392.
  10. Mañé R. On the dimensions of the compact invariant sets of certain non-linear maps// Dynamical systems and turbulence, Warwick 1980. Lecture Notes in Mathematics No. 898 / D.A. Rand, L.S. Young (Eds.). – Berlin: Springer, 1981.-P.230-242.
  11. Takens F. Detecting strange attractors in turbulence // Dynamical systems and turbulence, Warwick 1980. Lecture Notes in Mathematics No. 898 / D.A. Rand, L.S. Young (Eds.). – Berlin: Springer, 1981.-P.366-381.
  12. Gallager R.G. Information theory and reliable communication.- NY: Wiley, 1968.- 608p.
  13. Fraser A.M., Swinney H. Independent coordinates for strange attractors from mutual information // Phys. Rev. A.-1986.-Vol.33.-P.1134-1140.
  14. Schreiber T. Interdisciplinary application of nonlinear time series methods // Physics Rep.- 1999.-Vol.308.-P.1-64.
  15. Grassberger P., Procaccia I. Measuring the strangeness of strange attractors// Physica D. – 1983.-Vol.9.-P.189-208.
  16. Kennel M., Brown R., Abarbanel H. Determining embedding dimension for phase-space reconstruction using a geometrical construction// Phys. Rev. A.-1992.-Vol.45.-P.3403-3411.
  17. Glushkov A.V., Loboda N.S., Khokhlov V.N. Using meteorological data for reconstruction of annual runoff series over an ungauged area: Empirical orthogonal functions approach to Moldova-Southwest Ukraine region//Atmospheric Research (Elsevier).-2005.-Vol.77.-P.100-113.
  18. Glushkov A.V., Loboda N.S., Khokhlov V.N., Lovett L. Using non-decimated wavelet decomposition to analyze time variations of North Atlantic Oscillation, eddy kinetic energy, and Ukrainian precipitation // Journal of Hydrology (Elsevier).-2006.-Vol.322.-P.14-24.
Download full text (PDF)