Chaos-geometric method in short-range forecast of hyrdo- atmospheric pollutants: Advanced estimates

Authors: A.V. Glushkov, N.G. Serbov, I.A. Shakhman, A.K. Balan, V.F. Mansarliyskii, A.A. Dudinov

Year: 2014

Issue: 18

Pages: 198-203

Abstract

Within the chaos-geometric approach there are obtained improved data on the analysis and forecasting chaotic fluctuations in the time series of concentrations of nitrogen dioxide and sulfur dioxide in the atmosphere of the Gdansk region.

Tags: chaos-geometric approach; hydro-and atmosphere pollution; modeling

Bibliography

  1.  Sivakumar B. Chaos theory in geophysics: past, present and future // Chaos, Solitons & Fractals.-2004.-Vol.19(2).-P.441-462.
  2.  Kennel M.B., Brown R., Abarbanel H. Determining embedding dimension for phase-space reconstruction using a geometrical construction//Phys.Review A.-1992.-Vol.45.- 3403-3411.
  3.  Bunyakova Yu.Ya, Glushkov A.V. , Analysis and forecast of the impact of anthropogenic factors on air industrial goroda.-Odessa: Ecology.-2010.-256С.
  4.  Khokhlov V.N., Glushkov A.V., Loboda N.S., Bunyakova Yu.Ya. Short-range forecast of atmospheric pollutants using non-linear prediction method// Atmospheric Environment (Elsevier).-2008.-Vol. 42.-P.7774-7788.
  5. Lanfredi M., Macchiato M., Searching for low dimensionality in air pollution time series// Europhys.Lett.-1997.-Vol.97.-P.589-594.
  6.  Koçak K., Şaylan L., Şen O., Nonlinear time series prediction of O3 concentration in Istanbul//Atmospheric Environment (Elsevier).-2000.-Vol.34.-P.1267-1271.
  7.  Gallager R.G., Information theory and reliable communication.-N-Y.: Wiley.-1986.-320P.
  8.  Grassberger P., Procaccia I., Measuring the strangeness of strange attractors//Physica D.- 1983.-Vol.9.-P.189–208.
  9.  Sivakumar B. Chaos theory in geophysics: past, present and future // Chaos, Solitons & Fractals.-2004.-Vol.19(2).-P.441-462.
  10.  Chelani A.B. Predicting chaotic time series of PM10 concentration using artificial neural network // Int. J. Environ. Stud.-2005.-Vol.62(2).-P.181-191.
  11. Gottwald G.A., Melbourne I. A new test for chaos in deterministic systems// Proc. Roy. Soc. London. Ser. A. Mathemat. Phys. Sci.-2004.-Vol.460.-P.603-611.
  12. Packard N.H., Crutchfield J.P., Farmer J.D., Shaw R.S. Geometry from a time series// Phys. Rev. Lett. – 1980. – Vol. 45. – P. 712-716.
  13.  Abarbanel H.D.I., Brown R., Sidorowich J.J., Tsimring L.Sh. The analysis of observed chaotic data in physical systems // Rev. Mod. Phys.-1993.-Vol.65.- P.1331-1392.
  14.  Mañé R. On the dimensions of the compact invariant sets of certain non-linear maps// Dynamical systems and turbulence, Warwick 1980. Lecture Notes in Mathematics No. 898 / D.A. Rand, L.S. Young (Eds.). – Berlin: Springer, 1981. – P. 230-242.
  15.  Takens F. Detecting strange attractors in turbulence // Dynamical systems and turbulence, Warwick 1980. Lecture Notes in Mathematics No. 898 / D.A. Rand, L.S. Young (Eds.). – Berlin: Springer, 1981. – P. 366-381.
  16.  Fraser A.M., Swinney H. Independent coordinates for strange attractors from mutual information// Phys. Rev. A. – 1986. – Vol. 33. – P. 1134-1140.
  17.  Schreiber T. Interdisciplinary application of nonlinear time series methods // Phys. Rep. – 1999. – Vol. 308. – P. 1-64.
  18.  Glushkov A.V., Khokhlov V.N., Tsenenko I.A., Atmospheric teleconnection patterns: wavelet analysis//Nonlinear Processes in Geophysics.-2004.-Vol.11(3).-P.285-293.
  19.  Glushkov A.V., Khokhlov V.N., Serbov N.G., Bunyakova Y.Y., Balan A.K., Balanyuk E.P. Low-dimensional chaos in time series of concentrations of pollutants in the atmosphere and hydrosphere // Herald Odessa Environment. Univ.-2007.-N4.-C.337-348
  20.  Glushkov A.V., Svinarenko A.A., Buyadzhi V.V., Zaichko P.A., Ternovsky V.B. Chaos-Geometric Attractor and Quantum Neural Networks Approach to Simulation Chaotic Evolutionary Dynamics During Perception Process// Advances in Neural Networks, Fuzzy Systems and Artificial Intelligence, Series: Recent Advances in Computer Engineering, Ed. J.Balicki.(Gdansk, WSEAS Pub.).-2014.-Vol.21.-P.143-150
  21.  Glushkov A.V., Khetselius O.Y., Brusentseva S.V., Zaichko P.A., Ternovsky V.B. Studying interaction dynamics of chaotic systems within a non-linear prediction method: application to neurophysiology// Advances in Neural Networks, Fuzzy Systems and Artificial In-telligence, Series: Recent Advances in Computer Engineering, Ed. J.Balicki.(Gdansk, WSEAS Pub.).-2014.-Vol.21.-P.69-75.
  22.  Glushkov A.V., Loboda N.S., Khokhlov V.N. Using meteorological data for reconstruction of annual runoff series over an ungauged area: Empirical orthogonal functions approach to Moldova-Southwest Ukraine region//Atmospheric Research (Elseiver).-2005.-Vol.77.-P.100-113.
  23.  Glushkov A.V., Loboda N.S., Khokhlov V.N., Lovett L. Using non-decimated wavelet decomposition to analyse time variations of North Atlantic Oscillation, eddy kinetic energy, and Ukrainian precipitation // Journal of Hydrology (Elseiver).-2006.-Vol. 322. N1-4.-P.14-24.
Download full text (PDF)