Zones of interactions within the near-surfase layer of the atmosphere in North Atlantic. November

Authors: Serga E. N., Serga I. N.

Year: 2017

Issue: 22

Pages: 30-38


To reveal the zones of active interaction between the atmosphere and the ocean in the North Atlantic and to determine the regions causing a significant impact on formation of features of climatic response regimes in the Eastern Europe methods of cluster and component analysis were applied as influencing factors representing characteristics of heat and moisture exchange in the near-surface layer before including them in the imitation model.

Each node of a greed grid of 2,5º  2,5º of the North Atlantic identifies the first three main components describing more than 80% of the total dispersion of the processes of interaction between the underlying surface and the adjacent layer of the atmosphere.

Homogeneous regions were defined in the fields of the main components of the vectors of state of meteorological characteristics in the near-surface layer of the atmosphere in the North Atlantic using the Universal iterative method of data clustering. The article includes a physical and statistical analysis of obtained clustering schemes having a good scientific justification. It shows that the clusters of the first main component have a large-scale nature while the second and third components are of a focal character. Clusters are characterized by the intensity of the processes of interactions in the near-surface layer. The intensity of such processes is characterized by the distribution and values of the weight loads, the mean values of representative vectors and the intracluster dispersion. It determines that the first main component makes the main contribution to the formation of the most of initial meteorological values and the third main component reflects the influence of local features on the interaction processes.

Tags: air temperature; atmosphere; cluster; latent heat fluxes; main component; representative vector; weight load; атмосфера; атмосфера; вагове навантаження; вагове навантаження; головна компонента; головна компонента; кластер; кластер; приховані потоки тепла; приховані потоки тепла; репрезентативний вектор; репрезентативний вектор; температура повітря; температура повітря


  1. Kulaichev A. P. Metody i sredstva kompleksnogo analiza dannykh [Methods and means for complex date analysis]. Moscow: INFRA-M, 2006. 512 p.
  2. Shkolnyi E. P., Loeva I. D., Goncharova L. D. Obrobka ta analiz hidrometeorolohichnoi informatsii [Processing and analysis of the hydrometeorological data]. Kyiv,1999. 578 p.
  3. Sluzhba dannykh ЕСMWF ERA-40 [Data Service ESMW FERA-40].
  4. Serga E. N. The universal iterative method of clusterization of data. Ukr. gìdrometeorol. ž. – Ukr.hydrometeor.j, 2013, no 12. uk/category/2013-uk/12-uk/ (In Russian).
  5. Vlasova G. A., Polyakova A. M. Aktivnaya energeticheskaya zona okeana i atmosfery severo-zapadnoy
    chasti Tikhogo okeana [The active energy zone of the ocean and the atmosphere of the northwestern part of the Pacific Ocean]. Vladivostok: Dal’nauka, 2004. 146 p.
  6. Lappo S. S., Gulev S. K., Rozhdestvenskiy A. E. Krupnomasshtabnoe teplovoe vzaimodeystvie v sisteme
    okean-atmosfera i energoaktivnye oblasti Mirovogo okeana [Large-scale heat interaction in the ocean-atmosphere system and energy active areas of the World Ocean]. Leningrad: Gidrometeoizdat, 1990. 335 p.
  7. Marchuk G. I., Kondrat’ev K. Ja., Kozoderov V. V., Lappo S. S., Sarkisyan A. S., Khvorostyanov V. I. Energoaktivnye zony: kontseptual’nye osnovy. Seriya: Atmosfera, okean, kosmos — programma «Razrezy» [Energy-intensive zones: conceptual foundations. Series: Atmosphere, ocean, space – the program “Cuts”]. Moscow: VINITI, 1989. Vol. II. Ch. II. 368 p.
  8. Serga E. N. Characteristic features of homogeneous areas in the fields of hydrometeorological characteristics in the Northern Atlantic during the cold season. Vìsn. Odes. derž. ekol. unìv. – Bulletin of the OSENU, 2016, vol. 20. 20-uk/ (In Russian).
  9. Serga E.N., Sushchenko A.I. Climatic zoning of fields of average monthly temperatures of the underlying surface and air in the northern part of the Atlantic Ocean in the winter period. Austrian Journal of Humanities and Social Sciences, 2014, no. 9–10, pp. 180–186. (In Russian).
Download full text (PDF)