Authors: Kruglyak Yu.A., Glushkov A.V., Kruglyak N.E.
Year: 2011
Issue: 11
Pages: 210-218
Abstract
Band structure of MgO is studied in the frame of the density functional theory using GGA-PBE model with an account of the Hubbard U term. We recommend U = 7.86 eV for magnesium oxide which gives correct quantitative description of MgO band structure including forbidden gap in agreement with experimental data. Quantitative interpretation of the nature and origin of the valence and conduction bands is also obtained.
Tags: band structure; density of states; DFT; GGA; Hubbard U term; MgO; PBE
Bibliography
- Roessler D.M., Walker W.C. Electronic Spectrum and Ultraviolet Optical Properties of Crystalline MgO // Phys. Rev.- 1967.- V. 159.- N 3.- P. 733 – 738.
- Whited R.C., Flaten Ch.J., Walker W.C. Exciton thermoreflectance of MgO and CaO // Solid State Communications.- 1973.- V. 13.- N 11.- P. 1903 – 1905.
- Валбис Я.А., Калдер К.А., Куусманн И.Л., Лушик Ч.Б., Ратас А.А., Рачко З.А., Спрингис М.Е., Тайт В.М. Краевая люминесценция экситонов в кристаллах MgO в вакуумной ультрафиолетовой области спектра // Письма в ЖЭТФ.- 1975.- Т. 22, N 2.- C. 83 – 85.
- Ulrici B., Ulrici W., Kovalev N.N. Optical absorption in SrO single crystals // Phys. Status Solidi.- 1976.- V. 17.- P. 2305 – 2307.
- Pandey R., Jaffe J.E., Kunz A.B. Ab initio band-structure calculations for alkaline-earth oxides and sulfides // Phys. Rev. B.- 1991.- V. 43.- N 11.- P. 9228 – 9237.
- de Boer P.K., de Groot R.A. The conduction bands of MgO, MgS and HfO2 // J. Phys.: Condens. Matter.- 1998.- V. 10.- P. 10241 – 10248.
- Chang K.J., Cohen M.L. High-pressure behavior of MgO: Structural and electronic properties // Phys. Rev. B.- 1984.- V 30.- N 8.- P. 4774 – 4781.
- Stepanyuk V.S., Szasz A., Grigorenko B.L., Farberovich O.V., Katsnelson A.A. Electronic structure and optical properties of MgO: Band structure calculation and cluster model // Phys. Status Solidi B.- 1989.- V. 155.- N 1.- P. 179 – 184.
- Kohn W., Sham L.J. Self-Consistent Equations Including Exchange and Correlation Effects // Phys. Rev. A.- 1965.- V. 140.- N 4.- P. 1133 – 1138.
- Глушков А.В., Кругляк Ю.А. Квазичастичный лагранжев метод в теории атомов и ионов // В кн.: Актуальные проблемы спектроскопии.- М.: Наука, 1985.- С. 291 – 293.
- Кругляк Ю.А., Глушков А.В. Метод расчета энергий и длин химических связей в модели квазиэлектронов // Журн. физич. химии.- 1986.- Т. 60, N 5.- С. 1259 – 1261.
- Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple // Phys. Rev. Letters.- 1996.- V. 77.- N 18.- P. 3865 – 3868.
- Cococcioni M., de Gironcoli S. Linear response approach to the parameters in the LDA + U method // Phys. Rev B.- 2005.- V. 71.- P. 35105 – 35120.
- Soler J.M., Artacho E., Gale J.D., Garcia A., Junquera J., Ordejon P., Sanchez-Portal D. The SIESTA method for ab initio order-N materials simulation // J. Phys.: Condens. Matter. – 2002. – V. 14.- P. 2745 – 2779.
- Wyckoff R.W.G. Crystal Structures.- New York: Interscience Publishers, 1963.- V. 1, P. 85
- Fiermans L., Hoogewijs R., de Meyer G., Vennik J. On X-ray photoelectron spectroscopy of alkaline-earth oxides // Phys. Status Solidi A.- 1980.- V. 59.- N 2.- P. 569 – 574.
- Bortz M.L., French R.G., Jones D.J., Kasowski R.V., Ohuchi F.S. Temperature dependence of the electronic structure of oxides: MgO, MgAl2O4 and Al2O3 // Phys. Scripta.- 1990.- v. 41.- N 4.- P. 537.
- Anisimov V.I., Aryasetiawan F., Lichtenstein A.I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method // J. Phys.: Condens. Matter.- 1997, V. 9.- P. 767-808.