Methodical Aspects in Computation of Graphene Band Structure with an Account of σ-Core. Theoretical

Authors: Ю.А. Кругляк, Н.Е. Кругляк

Year: 2012

Issue: 13

Pages: 207-218

Abstract

Theoretical basis to compute graphene band structure and density of states in the simplest π–electronic approximation with derivation of the Dirac – Weyl equantions are given including results with an account for ππ–overlap and neighbours up to 3rd order. The necessity of accounting for graphene σ-core is stated. DFT/LDA, GGA and EHT-SCF approaches are shortly described. Corresponding computational observations including ab initio results are given in the next communication.

Tags: band structure; density of states; DFT; EHT-SCF; GGA; graphene; LDA; molecular electronics; nanophysics

Bibliography

  1. Стріха М.В. Фізика графену: стан і перспективи // Sensor Electronics and Microsystem Technologies.- 2010.- Т. 1(7), N 3.- С. 5 – 13.
  2. Geim A.K. Graphene: Status and Prospects // Science.- 2009.- V. 324.- P. 1530 – 1534.
  3. Novoselov K.S. Beyond the wonder material // Physics World.- 2009.- V. 22, N 8.- P. 27–30.
  4. Лозовик Ю.Е., Меркулова С.П., Соколик А.А. Коллективные электронные явления в графене // УФН.- 2008.- Т. 178, N 7.- C. 757 – 776.
  5. Морозов С.В., Новоселов К.С., Гейм А.К. Электронный транспорт в графене // УФН.- 2008.- Т. 178, N 7.- C. 776 – 780.
  6. Ando Tsuneya. Physics of Graphene. Zero-Mode Anomalies and Roles of Symmetry // Progress of Theor. Phys. Suppl.- 2008.- No. 176.- P. 203 – 226.
  7. Geim A.K., Novoselov K.S. The Rise of Graphene // Nature Mat.- 2007.- V. 6.- P. 183 – 191.
  8. McClure J.W. Diamagnetism of Graphite // Phys. Rev.- 1956.- V. 104.- P. 666 – 671.
  9. Slonczewski J.C., Weiss P.R. Band Structure of Graphite // Phys. Rev.- 1958.- V. 109, N. 2.- P. 272 – 279.
  10. Ando T. Theory of electronic states and transport in carbon nanotubes // J. Phys. Soc. Japan.- 2005.- V. 74.- P. 777-817.
  11. Shon N.H., Ando T. Quantum transport in two-dimensional graphite system // J. Phys. Soc. Japan.- 1998.-V. 67.- P. 2421 – 2429.
  12. Zheng Y., Ando T. The Hall conductivity of two-dimensional graphite system // Phys. Rev. B.- 2002.- V. 65, N. 245420.- P. 1 – 11.
  13. Suzuura H., Ando T. Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice // Phys. Rev. Lett.- 2002.- V. 89, N. 266603., P. 1-4.
  14. Ando T., Zheng Y., Suzuura H. Dynamical conductivity and zero-mode anomaly in honeycomb lattices // J. Phys. Soc. Japan.- 2002.- V. 71.- P. 1318 – 1324.
  15. Ando T., Fowler A.B., Stern F. Electronic properties of two-dimensional systems // Rev. Mod. Phys.- 1982.- V. 54.- P. 437 – 672.
  16. Novoselov R.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric Field Effect in Atomically Thin Carbon Films // Science.- 2004.- V. 306.- P. 666 – 669.
  17. Morozov S.V., Novoselov K.S., Schedin F., Jiang D., Firsov A.A., Geim A.K. Two-dimensional electron and hole gases at the surface of graphite // Phys. Rev. B.- 2005.- V. 72, N. 20.- P. 201401(R).
  18. Novoselov R.S., Geim A.K., Morozov S.V., Jiang D., Katsnelson M.I., Grigorieva I.V., Dubonos S.V., Firsov A.A. Two-Dimensional Gas of Massless Dirac Fermions in Graphene // Nature.- 2005.- V. 438.- P. 197-200.
  19. Zhang Y,. Tan Y.-W., Stormer H.L., Kim P. Experimental observation of the quantum Hall effect and Berry’s phase in grapheme // Nature.- 2005.- V. 438.- P. 201 – 204.
  20. http://large.stanford.edu/courses/
  21. Shaik S., Shurki A., Danovich D., Hiberty P.C. A Different Story of π-Delocalization: The Distortivity of π-Electrons and Its Chemical Manifestations // Chem. Rev.- 2001.- V. 101, N 5.- P. 1501 – 1539.
  22. Hiberty P.C., Shaik S. The distortive tendencies of π-electronic systems, their relationship to isoelectronic σ-Bonded Analogs, and observables: A description free of the classical paradoxes // Phys. Chem. Chem. Phys.- 2004.- V. 6.- P. 224 – 231.
  23. Hiberty P.C., Shaik S. Some Answers to Frequently Asked Questions About the Distortive Tendencies of π-Electronic Systems // Theor. Chem. Acc.- 2005.- V. 114.- P. 169 – 181.
  24. Koch W., Holthausen M.C. A Chemist’s Guide to Density Functional Theory, Second Edition. – Weinheim.: Wiley-VCH, 2001.- pp. 293.
  25. Cerda J., Soria F. Accurate and transferable extended Hückel-type tight-binding parameters // Phys. Rev. B.- 2000.- V. 61.- P. 7965 – 7971.
  26. Zahid F., Paulsson M., Polizzi E., Ghosh A.W., Siddiqui L., Datta S. A self-consistent transport model for molecular conduction based on extended Hückel theory with full three-dimensional electrostatics // J. Chem. Phys.- 2005.- V. 123, N 6.- P. 64707.
  27. Kienle D., Cerda J.I., Ghosh A.W. Extended Huckel theory for band structure, chemistry, and transport: I. carbon nanotubes // J. Appl. Phys.- 2006.- V. 100.- P. 043714.
  28. Stokbro K., Petersen D.E., Smidstrup S., Blom A., Ipsen M., Kaasbjerg K. Semi-Empirical Model for Nano-Scale Device Simulations // Phys. Rev. B.- 2010.- V. 82, N 075420.- P. 1– 8.
  29. http://www.quantumwise.com/
  30. Lide David R. (Ed.). Handbook of Chemistry and Physics, 91th Edition // N.Y.: CRC, 2011.
  31. Wallace P.R. The Band Theory of Graphite // Phys. Rev.- 1947.- V. 71, N 9.- P. 622 – 634.
  32. Saito R., Dresselhaus G., Dresselhaus M.S. Physical Properties of Carbon Nanotubes // London: Imperial, 1998.
  33. Saito Riichiro, Kataura Hiromichi. Optical Properties and Raman Spectroscopy of Carbon Nanotubes // In Dresselhaus M.S., Dresselhaus G., Avouris Ph. (Eds.). Carbon Nanotubes // Topics Appl. Phys., Berlin: Springer, 2001.- V. 80.- P. 213 – 247.
  34. Reich S., Maultzsch J., Thomsen C., Ordejon P. Tight-binding description of graphene // Phys. Rev. B.- 2002.- V. 66, N 035412.- P. 1 – 5.
  35. http://www.nextnano.de/
  36. Hoffmann R., Lipscomb W.N. Theory of Polyhedral Molecules. I. Physical Factorizations of the Secular Equation // J.Chem.Phys.- 1962.- V. 36.- P. 2179.
  37. Hoffmann R. An Extended Hückel Theory. I. Hydrocarbons // J. Chem. Phys.- 1963.- V. 39.- P. 1397 – 1412.
  38. Кругляк Ю.А., Дядюша Г.Г., Куприевич В.А., Подольская Л.М., Каган Г.И. Методы расчета электронной структуры и спектров молекул // K.: Наукова думка, 1969.- Гл. 2.- § 3.- C. 108 – 174.
  39. Whangbo V.H., Hoffmann R. Counterintuitive Orbital Mixing // J.Chem.Phys.- 1978.- V.68, N 12.- P.5498-5500.
  40. Ammeter J. H., Burgi H.-B., Thibeault J.C., Hoffmann R. Counter-Intuitive Orbital Mixing in Semi-Empirical and Ab Initio Molecular Orbital Calculations // J. Am. Chem. Soc.- 1978.- V. 100.- P. 3686 – 3692.
  41. Wolfsberg M., Helmholtz L. The spectra and electronic structure. Tetrahedral ions MnO4-, CrO42- // J. Chem. Phys.- 1952.- V. 20, N 5.- P. 837 – 843.
  42. Soler J.M., Artacho E., Gale J.D., Garcia A., Junquera J., Ordejon P., Sanchez-Portal D. The SIESTA method for ab initio order-N materials simulation // J. Phys.: Condens. Matter.- 2002.- V. 14.- P. 2745-2779.
  43. Muller Edgar. Tables of Parameters for Extended Huckel Calculations (in press).
  44. http://www.icmm.csic.es/jcerda/EHT_TB/TB/Periodic_Table.html
  45. Кругляк Ю.А., Глушков А.В., Кругляк Н.Е. Зонная структура MgO в модели GGA-PBE с учетом поправки Хаббарда U // Вісник Одеського державного екологічного ун-ту.- 2011.- В. 11.- С. 210 – 218.
  46. Кругляк Ю.А., Кругляк Н.Е. Одноэлектронный одномолекулярный полевой транзистор: квантовомеханическое и электродинамическое рассмотрение на примере молекулы бензола // Вісник Одеського держ. екологічного ун-ту.- 2011.- В. 12.- С. 201 – 214.
  47. Кругляк Ю.А., Кругляк Н.Е. Квантовомеханический расчет одноэлектронного полевого транзистора на молекуле бензола // Sensor Electronics and Microsystem Technologies.- 2011.- Т. 2(8), № 3.- С. 60-70.
  48. Hedin L., Lundqvist B.I. Explicit local exchange-correlation potentials // J. Phys. C: Solid State Phys.- 1971.- V. 4, N 14.- P. 2064.
  49. Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy // Phys. Rev. B.- 1992.- V. 45, N 23.- P. 13244 – 13249.
  50. Perdew J.P., Zunger A. Self-interaction correction to density-functional approximations for many-electron systems // Phys. Rev. B.- 1981.- V. 23, N 10.- P. 5048 – 5079.
  51. Gell-Mann M., Brueckner K.A. Correlation Energy of an Electron Gas at High Density // Phys. Rev., 1957.- V. 106, N 2.- P. 364 – 368.
  52. Wigner E.P. Effects of the Electron Interaction on the Energy Levels of Electrons in Metals // Trans. Faraday Soc.- 1938.- V. 34.- P. 678 – 685.
  53. Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior // Phys. Rev. A.- 1988.- V.- 38, N 6.- P. 3098 – 3100.
  54. Becke A.D. Density functional calculations of molecular bond energies // J. Chem. Phys.- 1986.- V. 84, N 8.-P. 4524-4530.
  55. Becke A.D. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals // J. Chem. Phys.- 1997.- V. 107, N 20.- P. 8554 – 8565.
  56. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple // Phys. Rev. Letters.- 1996.- V. 77, N 18.- P. 3865 – 3868.
  57. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple (Erratum) // Phys. Rev. Letters.- 1997.- V. 78, N 7.- P. 1396.
  58. Perdew J.P., Ruzsinszky A., Csonka G.I., Vydrov O.A., Scuseria G.E., Constantin L.A., Zhou X., Burke R. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces // Phys. Rev. Lett.- 2008.- V. 100, N 13.- P. 136406 – 136410.
  59. Perdew J.P., Chevary J.A., Vosko S.H., Jackson K.A., Pederson M.R., Fiolhais C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation // Phys. Rev. B.-1992.- V. 46, N 11.- P. 6671 – 6687.
  60. Zhang Y., Yang W. Comment on “Generalized Gradient Approximation Made Simple” // Phys. Rev. Lett.- 1998.- V. 80, N 4.- P. 890.
  61. Xu X., Goddard III W.A. The extended Perdew-Burke-Ernzerhof functional with improved accuracy for thermodynamic and electronic properties of molecular systems // J. Chem. Phys.- 2004.- V. 121, N 9.- P. 4068-4083.
  62. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density // Phys. Rev. B.- 1988.- V. 37, N 2.- P. 785 – 789.
  63. Miehlich D., Savin A., Stoll H., Preuss H. Results obtained with the correlation energy density functionals of Becke & Lee, Yang & Parr // Chem. Phys. Lett.- 1989.- V. 157.- P. 200 – 206.
  64. Perdew J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas // Phys. Rev. B.- 1986.- V.- 33, N 12.- P. 8822 – 8824.
  65. Perdew J.P. Erratum: Density-functional approximation for the correlation energy of the inhomogeneous electron gas // Phys. Rev. B.- 1986.- V.- 34, N 10.- P. 7406.
  66. Perdew J.P., Chevary J.A., Vosko S.H., Jackson K.A., Pederson M.R., Fiolhais C. Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation // Phys. Rev. B.- 1993.- V. 48.- P. 4978.
  67. http://www.tddft.org/programs/octopus/wiki/index.php/Libxc
Download full text (PDF)