The approbating of an atmospheric boundary layer model with the Wangara experiment data

Authors: Kazakov А.L., Ivanova Е.V.

Year: 2010

Issue: 10

Pages: 97-111

Abstract

The approbating of an atmospheric boundary layer one-dimensional numerical model to reproduce its thermodynamic structure over land at some ones of twenty four hours, was made. The model equations system, firstly, with different closuring orders, secondly, with the different closuring methods, was closured. There are such models amongst the firstorder ones, in which the diagnostic equations of the turbulent coefficients from higher-order scheme [1], in which it was demanded to use the kinetic turbulent energy of the vertical velocity fluctuations on the condition, that the stable boundary layer was, were received. Twelve experiments were conducted in all. The detail analysis of the qualitative and quantitative agreement between the model results and fact data, was made.

Tags: "b-l" and "b- ε " closures; the boundary layer; the coefficients of difference and correlation; the mixing length; the one-dimensional model; the thermodynamic structure; the turbulence

Bibliography

  1. Зилитинкевич С.С., Эльперин Т., Клиорин Н., Рогачевский И. Замыкание уравнений Рейнольдса для устойчиво стратифицированных турбулентных течений в атмосфере и океане // Український гідрометеорологічний журнал. – 2009. –   № 4. – С. 75-102.
  2. Cuxart J., Holtslag A.A.M., Beare R.J., Bazile E., Beljaars A. and atc. Single-column model intercomparison for a stably stratified atmospheric boundary layer // Boundary-Layer Meteorology. – 2006. – N 118. – P. 273-303.
  3. Демченко П.Ф. Параметризация высоты планетарного пограничного слоя при переходе к устойчивой стратификации // Мат. модирование процессов в пограничных слоях атмосферы и океана. – М., 1989. – С. 23-26.
  4. Chimonas G. Steps, waves and turbulence in the stably stratified planetary boundary layer // Boundary-Layer Meteorol. – 1999. – 90, N 3. – P. 397-421.
  5. Zilitinkevich S.S., Esau I.N. On integral measures of the neutral barotropic planetary boundary layer // Boundary-Layer Meteorol. – 2002. – 104, N 3. – P. 371-379.
  6. Malbakhov V.M., Shlychkov V.A. Numerical modeling of a coherent structures ensemble with convection in the atmospheric boundary layer // Bull. Novosib. Comput. Cent. Ser. Numer. Model. Atmos., Ocean and Environ. Stud. – 2001. – N 7. – P. 35-41.
  7. Mitzeva Rumjana, Gerova Gerdana Numerical study of the heat and moisture exchange in the morning boundary layer// Idojaras. – 2000. – 104, N2. – P. 109-122.
  8. Letzel Maraus Oliver, Raosch Siegfried Large eddy simulation of thermally induced oscillations in the convective boundary layer// J. Atmos. Sci. – 2003. – 60, N 18. – P. 2328-2341.
  9. Weng Wensong, Taylor Peter A. On modeling the one-dimensional atmospheric boundary layer // Bounday-Layer Meteorol. – 2003. – 107, N2. – P. 371-400.
  10. Clarke R.H., Dyer A.J., Brook R.R., Reid D.G., Troup A.J. The Wangara experiment: boundary layer data //
  11. Сухоруков В.А. Иерархия моделей вертикального турбулентного обмена в океане / В.А. Сухоруков, Н.В. Дмитриев, С.Н. Лихачев // Метеорология и гидрология. – 1990. – № 10. – С. 74-82.
  12. Дмитриев Н.В., Лихачев С.М. Численные эксперименты с нестационарной моделью взаимодействующих слоев атмосферы и океана // Математические модели в исследовании динамики океана. – Новосибирск: ВЦ СОАН СССР, 1992. – C.51-64.
  13. Колинко А.В. Статистическая структура крупномасштабных океанологических полей на Ньюфаундленском энергетическом полигоне //Метеорология и гидрология. – 1990.– № 8. – с. 102–107.
Download full text (PDF)