Authors: Glushkov A.V., Serga E.N., Bunyakova Yu.Ya.
Year: 2009
Issue: 08
Pages: 233-238
Abstract
The method of non-linear forecast is applied to the time series of concentrations of the dust on two sites of the Odessa region. The Lyapunov dimensions spectrum is reconstructed and on its basis there are calculated the Kaplan-York dimensions and Kolmogorov entropy, which is reversely proportional to a limit of the prediction. It is shown that already simple method for the model construction provides the satisfactory results of the forecast.
Tags: forecast; pollution substances; time series of concentrations; Одесса; сhaos
Bibliography
- Abarbanel H.D.I., Brown R., Sidorowich J.J., Tsimring L.Sh. The analysis of observed chaotic data in physical systems // Rev. Mod. Phys., 1993. – V. 65. – P. 1331-1392.
- Sivakumar B. Chaos theory in geophysics: past, present and future // Chaos, Solitons & Fractals, 2004. – V. 19. – P. 441-462.
- Chelani A.B. Predicting chaotic time series of PM10 concentration using artificial neural network // Int. J. Environ. Stud., 2005. – V. 62. – P. 181-191.
- Glushkov A.V., Bunyakova Yu.Ya., Khokhlov V.N., Prepelitsa G.P., Tsenenko I.A. Sensing air pollution field structure in the industrial city’s atmosphere: stochasticity and effects of chaos // Sensor Electronics and Microsystem Technologies, 2005. – №. 1. – P. 80-84.
- Глушков А.В., Хохлов В.Н.,Сербов Н.Г, Бунякова Ю.Я, Балан А.К., Баланюк Е.П., Низкоразмерный хаос во временных рядах концентраций загрязняющих веществ в атмосфере и гидросфере // Вестник Одесск. гос. экололог. ун-та, 2007. – №4. – C. 337-348.
- Lorenz E.N. Deterministic nonperiodic flow // J. Atmos. Sci., 1963. – V. 20. – P. 130-141.
- Песин Я.Б. Характеристические показатели Ляпунова и гладкая эргодическая теория // Успехи мат. наук, 1977. – Т. 32. – № 1. – С. 55-112.
- Kaplan J.L., Yorke J.A. Chaotic behavior of multidimensional difference equations // Functional differential equations and approximations of fixed points. Lecture Notes in Mathematics No. 730 / H.-O. Peitgen, H.-O. Walter (Eds.). Berlin: Springer, 1979. – P. 204-227.
- Оселедец В.И. Мультипликативная эргодическая теорема. Характеристические показатели Ляпунова динамических систем // Тр. Мос. мат. об-ва, 1968. – Т. 19. – № 2. – С. 179-210.
- Sano M., Sawada Y. Measurement of the Lyapunov spectrum from a chaotic time series // Phys. Rev. Lett., 1985. – V. 55. – P. 1082-1085.
- Rissanen J. Stochastic complexity in statistical inquiry. Singapore: World Scientific, 1989. – 177 p.
- Schreiber T. Interdisciplinary application of nonlinear time series methods // Phys. Rep., 1999. – V. 308. – P. 1-64.
- Хохлов В.Н. Хаос и предсказуемость концентраций парниковых газов в атмосфере // Вестник Одесск. гос. экололог. ун-та, 2005. – Вып. 1. – С. 11-19.
- Tsonis A.A., Elsner J.B. Global temperature as a regulator of climate predictability // Physica D, 1997. – V. 108. – P. 191-196.
- Islam M.N., Sivakumar B. Characterization and prediction of runoff dynamics: a nonlinear dynamical view // Adv. Water Res., 2002. – V. 25. – P. 179-190.
- Glushkov A.V., Loboda N.S., Khokhlov V.N. Using meteorological data for reconstruction of annual runoff series over an ungauged area: Empirical orthogonal functions approach to Moldova-SW Ukraine region // Atmos. Res., 2005. – Vol. 77. – P. 100-113.
- Glushkov A.V., Khokhlov V.N., Tsenenko I.A. Atmospheric teleconnection patterns and eddy kinetic energy content: wavelet analysis // Nonlin. Processes Geophys., 2004. – V. 11. – P.285-293.
- Glushkov A.V., Khokhlov V.N., Prepelitsa G.P., Tsenenko I.A. Temporal variability of the atmosphere ozone content: Effect of North-Atalantic oscillation // Optics of atmosphere and ocean, 2004. – Vol. 14. – Р. 219-223.
- Glushkov A.V., Khokhlov V.N., Loboda N.S., Bunyakova Yu.Ya. Short-range forecast of atmospheric pollutants using non-linear prediction method // Atmos. Environ., 2008. – Vol. 42. – P. 7284-7292.