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In this article a minimum-time problem of deceleration of rotations of a free rigid body is stud-
ied analytically and numerically. It is assumed that a body contains a spherical cavity filled with 
highly viscous fluid. The body is subjected to a retarding torque of viscous friction. It is assumed 
that such body is dynamically asymmetric. An optimal control law for deceleration of rotations of 
the body is synthesized, and the corresponding time and phase trajectories are determined.  

The asymptotic approach made it possible to determine the control evolutions of the magnitude 
squared of the elliptic functions modulus k2, dimensionless kinetic energy and kinetic moment. 
The qualitative properties of the optimal motion were also found. 

The obtained results allow us to build a synthesis of the optimal deceleration of rotations of 
satellites and spacecrafts. They can be used to analyze dynamics of controlled spacecrafts. 
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1. INTRODUCTION 
 

Analysis of the motion of hybrid systems (i.e., 
objects containing elements with distributed and 
concentrated parameters) is of interest both theoreti-
cally and practically. This analysis can be done 
within the framework of the theory of singularly 
perturbed problems. Important results were obtained 
for systems containing quasi-rigid bodies. Com-
bined rotational and translational motions of these 
systems are close (under certain conditions) to the 
motion of absolutely rigid bodies. The influence of 
non-ideal features are reduced to the effects of the 
temporal boundary layer type and to additional per-
turbing moments in the Euler equations of angular 
motion of a fictitious rigid body after the completion 
of transient processes. The analysis of motions of a 
rigid body with a cavity filled with a viscous fluid 
and in a resistive medium had received much atten-
tion [1–6]. The control of rotations of quasi-rigid 
bodies using concentrated (applied to the frame) 
torques received less attention. Researchers man-
aged to distinguish a class of systems leading to 
smooth controls making it possible to apply singular 
disturbance methods without accumulation of 
boundary layer type errors appearing in the case of 
discontinuous (for example, bang-bang) controls [7–
9]. In this paper, we investigate the problem of time-
optimal deceleration of rotations of a dynamically 
non-symmetric body with a spherical cavity filled 
with highly viscous fluid (for small Reynolds num-
bers). In addition, the rigid body is subjected to the 
action of a small retarding torque of linear resistance 
of the medium. The rotations are controlled by a 

bounded torque, which can be exerted by vernier jet 
engines [7]. The model under consideration general-
izes the results obtained earlier in [7–11]. The prob-
lem of optimal deceleration of rotations of a dy-
namically symmetric body containing a viscous–
elastic element and a cavity filled with fluid is stud-
ied in [8]. The problem of time-optimal deceleration 
of rotations of a dynamically symmetric rigid body 
with a spherical cavity filled with highly viscous 
fluid and a moving mass attached to the body by an 
elastic joint with quadratic dissipation is considered 
in [9]. The problem of optimal deceleration of rota-
tions of a dynamically symmetric body with a cavity 
filled with highly viscous fluid is considered in [10], 
where the rigid body is subjected to a small torque 
of viscous friction of the external medium. The 
problem of time-optimal deceleration of rotations of 
a dynamically asymmetric body in a resistive me-
dium is considered in [11]. Approximate solutions 
of perturbed problems of time-optimal deceleration 
of rotations of rigid bodies about the center of mass 
(including objects with internal degrees of freedom) 
with applications to the spacecraft and aircraft dy-
namics were obtained in the monograph [7]. There, 
the deceleration of bodies having a cavity with vis-
cous fluid was studied. The cases of axisymmetric 
and asymmetric (in the undisturbed state) bodies 
with a spherical cavity filled with highly viscous 
fluid were considered. The deceleration of perturbed 
rotations of a rigid body close to a spherically sym-
metric one under the action of the torque exerted by 
the linear resistance of the medium was analyzed. 
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2. STATEMENT OF THE PROBLEM 

 

2.1 The equations of controlled rotations 
 

We consider a dynamically nonsymmetric rigid 
body with moments of inertia satisfying, for definite-
ness, the inequalities A1 > A2 > A3. Based on the ap-
proach described in [7], the equations of controlled 
rotations projected on the axes of the body-related coor-
dinate system (the Euler equations) can be expressed as 
[1, 4, 5, 7] 

 

  u r cJ J    ω ω ω M M M      (1) 
 

Here, ω = (p, q, r) is the vector of absolute angular 
velocity, J = diag (A1, A2, A3) is the tensor of body iner-
tia, Mu is the vector of control torque, Mr is the dissipa-
tion torque, and Mc is the torque of viscous fluid in the 
body cavity. The kinetic moment of the body is deter-
mined in the standard way as 

 

JG ω ,  1 2 3, ,G G G

1 1G A p A q A r

G , 
 

, G , G , 2 2 3 3
 

where G = (G1
2 + G2

2

r

 + G3
2)1/2 is its magnitude.  

To simplify the problem, we introduce structural 
constraints into system (1); in particular, we assume that 
the feasible values of the control torque Mu belong to a 
sphere [7]). This assumption is not inconsistent with the 
mass distribution and shape of the rigid body and is 
often used in attitude control problems. It is also be-
lieved that the diagonal tensor of the external resistance 
torque is proportional to the moment of inertia tensor; 
i.e., the dissipation torque is proportional to the kinetic 
moment 

 
J M ω

diag(1,1,1)PP  7
/8 525P a

.      (2) 
 

Here, λ is a constant coefficient depending on the 
medium properties. The resistance acting on the body is 
represented by a pair of forces. In this case, the magni-
tude of projections of the moment of this pair on the 
major axes of body inertia are λA1p, λA2q, λA3r and [4, 
5]. This assumption is not contradictory.  

Next, we assume that the cavity is filled with highly 
viscous fluid; i.e., υ >> 1 (υ-1 ~ ε << 1), where υ is the 
kinematic viscosity. The shape of the cavity is supposed 
to be almost spherical; then, following [1], for the tensor 
P of the viscous forces, we have 

 
 

,   

u b

,  (3) 
 

where ρ, υ are the fluid density and kinematic viscosity, 
respectively; and a is the cavity radius.  

The tensor P, which depends only on the cavity shape, 
characterizes the internal dissipative torque in the quasi-
static approximation due to the viscous fluid in the cav-
ity. For simplicity, Eqs. (1) use the so-called scalar ten-
sor defined by a single scalar P > 0. The components of 
this tensor have the form Pij = Pδij, where δij are the 
Kronecker symbols (the tensor P has this form if the 
cavity is spherical, for example). If the cavity is signifi-
cantly nonspherical, there are considerable difficulties in 
determining the tensor components.  

The admissible values of the moment Mu of the con-
trol forces are assumed to be bounded by the sphere  

 

M u , 1u ( , )b b t ω
*

*0 b b b

; ,   (4) 

    

0
0( )t ω ω ( ) 0T

, 
 

where b is a scalar function bounded in the domain of 
variation of its arguments t and G according to condi-
tions (4). This domain is given a priori or can be esti-
mated from the initial data for G (G(t0) = G0) by inte-
grating Eq. (1) with respect to ω. Below, we suppose 
that b = b (t, G) (or b = b(t) or b = const).  
 
 
 
2.2 The problem of time-optimal deceleration  

 

We pose the problem of time-optimal deceleration 
of rotations 

 

, ω , T , min u 1u

1
1p

. (5) 
 

It is required to find an optimal control u = u(t, ω), 
the corresponding trajectory ω(t, t0, ω0), the time 
T = T(t0, ω0), and the Bellman function W = T(t, ω). 
Based on dynamic programming and the Schwarz ine-
quality, under the simplifying condition on the coeffi-
cient b (b = b(t, G) = b0(t, G), where the zero subscript 
will be omitted below) a time-optimal control is con-
structed in the form (see [7]) 

 
 

M bA pG  1
1q, M bA qG 

1
3r

,  (6) 

 

M bA rG  , ,b b t G . 
 

With regard to external force factors, the torque 
of viscous fluid in the cavity Mc is determined as 
(see [1]) 

 

1

2

3

c

m
P

m

m

 
      
 

M ,     (7) 
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where 
2

2
2G

  
    

 
1

1

2 1b b b
m p p

G A G
     
 

 

 

 2 233
3 2 31 32 322

3
G

qr A A q Gr
 

        
331 

2
2 1 2 2 3 1

1 2 3

( )(
p

q A A A A A A
A A A

   )   

2
3 1 3 3 2 1( )( )r A A A A A A      . 

 

The expressions for m2 and m3 are obtained from m1 
in (7) by a cyclic permutation of A1, A2, A3 and p, q, r. 
The coefficients λ2 + b2/G2, λ + b/G, and 2λb/G in 
mi (i = 1, 2, 3) remain unchanged, and the terms contain-
ing α31, α32, α31

2 + α32
2 have a similar form. The direc-

tion cosines αij are expressed in terms of the Euler an-
gles φ, ψ, and θ according to well-known formulas [12]. 
Neglecting the influence of Mu and Mr on Mc, we ob-
tain the torque of viscous fluid in the cavity in the form 

 

1 2 3

c P

A A A
 M

2
2 1 2 2 3 1

2
3 3 2 1

3 1 2

( )( )

( )( )

( )
.

q A A A A A A
p

A A A

A A A

     
  
      


     

   
 


 
 
 

 

          

3 1

2
3 2 3

2

( )

r A A A

r A A A
q

p A A A





 1 1 2 3 1 2

2
1 3 1 1 2 3

2
2 2 3 1 2 3

( )( )

( )( )

( )( )

A A A

p A A A A A A
r

q A A A A A A

  


    
       

(8) 

 
 

accurate to a first-order infinitesimal ε.  
We consider this expression only in the first approxi-

mation. The equations of controlled motion (1) simpli-
fied on the basis of expression (8) in projections on the 
major central axes of inertia have the form: 

 
 

1
1 3 2 1

A p
A p A A qr b A p

G
            

2
2 1 2 2 3 1

1 2 3

( )( )
P

p q A A A A A A
A A A

    

)
  

 

2
3 1 3 3 2 1( )(r A A A A A A     

 

,     

2A q
2 1 3 2A q A A pr b     A q

G
 

  
 

2
3 2 3 3 1

1 2 3

( )(q r A A A A A
A A A

  2 )
P

A  
  

 

2
1 2 1 1 3 2( )( )p A A A A A A      ,     

 

 

  3
3 2 1 3

A r
A r A A pq b A r

G
      

   
 

2 ( )(
P

r p A A A A A
1 3 1 1 2 3

1 2 3

)A
A A A

    

.
  

 

2
2 3 2 2 1 3( )( )q A A A A A A          (9) 

 

The kinematic relations are omitted because Eqs. (9) 
form a closed system. These equations are further ana-
lyzed. 

 
3. SOLUTION OF THE OPTIMAL DECELERA-

TION PROBLEM 
 

Let us note that the torque exerted by viscous 
fluid in the cavity is internal, while the torque of the 
linear drag of the medium is external. Multiplying 
the first equation in (8) by G1, the second equation 
by G2, and the third equation by G3, and summing 
them, we obtain a scalar equation to be integrated 

 

 ,G b t G G    0
0( ) G

    
0

0
0( ) exp ( )exp ( )

t

t

G t G t t b t d

, G t .   (10) 
 

Upon solving Cauchy problem (10), we obtain 
from the condition of stopping the rotation (5) the 
required expression for the time T = T(t0, G0) and 
the Bellman function W(t, G) = T(t, G). 

Recall that G = Jω. 
In the general case, for an arbitrary function 

b = b(t, G) in (10), the analytical integration of the 
Cauchy problem is complicated; however, it can be 
solved numerically. Equations (10) imply that the 
evolution of the magnitude of the kinetic moment G 
is affected by the control moment and the medium 
drag. The internal torque of the viscous fluid in the 
cavity has no effect. If b = b(t) (i.e., the function b(t) 
is independent of G), we obtain the solution of 
boundary problem (10) 

 

        

   0
0exp ( )exp

T

t

G t b d

,(11) 

 

where 
0

      

According to (4), Eq. (11) is solvable with re-
spect to the unknown T, which leads to the construc-
tion of the time-optimal solution. Here, t is the cur-
rent time of deceleration and T is the optimal time. 
For b = const and t0 = 0, the solutions of equation 
(2.1) and boundary problem (11) are written as 

 

 01
( ) exp( )G t G b t b      

,  (12) 
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01
ln( 1)T G


 

b
. 

 
Next, we consider in detail case (12). Let us mul-

tiply the first equation in (8) by p, the second equa-
tion by q, the third equation by r, and sum the re-
sults. The resulting expression for the derivative of 
the kinetic energy H is 

 

 22 2
1 22

1 2 3

2
2

bH P
H H p q A A

A A AG
      



     22 2A A A p r A A A A A       

  
  

  

3 1 2 1 3 2 1 3

   22 2
2 3 1 2 3q r A A A A A     

 

.(13) 

 
 

Consider an undisturbed motion (b = λ = ε = 0). 
In the absence of perturbations, the rotation of the 
rigid body is a Euler–Poinsot motion. The variables 
G and H become constant and φ, ψ, and θ are func-
tions of time t. The slow variables in the perturbed 
motion are G and H, and the fast variables are the 
Euler angles φ, ψ, and θ. 

Consider a motion under the condition 
2HA1 ≥ G2 ≥ 2HA2 corresponding to the trajectories 
of the kinetic moment vector, which envelope the 
major torque axis Oz1. Define 

 

 
2

2 3 12 2

2
1 2 3

2
0 1

2

A A HA G
k k

A A G HA

 
  

 
, (14) 

 

which is the module of elliptic functions describing 
this motion and is a function of the kinetic moment 
G and the kinetic energy H (in the case of unper-
turbed motion, it is a constant).  

To construct the averaged first-approximation 
system of equations, we substitute the solution of 
the unperturbed Euler–Poinsot motion into the right-
hand side of Eq. (13) and average over the variable 
ψ and then over time t taking into account the de-
pendences of φ and θ on t. Here, we retain the nota-
tion for the slow variables G and H. As a result, we 
obtain 

 

2
2

dH bH
H

dt G
             

2
1 3 1 2 2 34 ( )( )( )

)

PH A A A A A A  
 

 2 ) ( )U   
2( ) k 

2 2 2 2
1 2 33 (A A A S k

2 1 3 1 3 2( )(A A A A A A   
   

 

) (k V k

2
1 2 3 3 2 1( )( ) ( 2)A A A A A A k U k    

k   

  

2 2
3 1 2 1 2 3( )( ) (1 2 ) ( )A A A A A A k U k k        ,(15)  

where ( ) 1 ( ) / ( )U k E k K k  ) 1 ( ) / ( )k E k K k , V( , 
 

 
22 2

2 3 1 2( )S k A A A A k      .    

 

Here, K(k) and E(k) are the complete elliptic in-
tegrals of the first and second kind, respectively 
[13]. Equation (15) implies that the resistance of the 
medium and the torque of the viscous fluid in the 
body cavity as well the control moment cause the 
evolution of the kinetic energy H of the body. The 
expression in the braces on the right-hand side of 
equation (15) is positive (for A1 > A2 > A3) because 
of the inequalities (1 – k2)K ≤ E ≤ K (see [13]). Con-
sequently, dH / dt < 0 because H > 0; i.e., H is a 
strictly decreasing variable for any k2 ϵ [0, 1]. Note 
that Eq.(15) has an essential singularity as G → 0.  

Differentiating expression (14) for k2 with regard 
to (15), we obtain a the differential equation 

 

   22
1 3 2 1 3 2 1 3

2 2 2
1 2 3

2

3

PG A A A A A A A Adk

dt A A A

         

2 2 ( )
(1 )(1 ) [(1 ) (1 ) ]

( )

E k
k k

K k

 
          
 

,(16) 

 

where 
2 2

2 1 3 2 1 3

1 3 2 1 3 2 1 3

3 [( ) ( )]

( )[ ( ) 2 ]

A A A A A A

A A A A A A A A

  
 

   
. 

 

Equations (15) and (16) were obtained by the 
method of averaging [1, 2, 7]. This corresponds to 
the fact that the kinetic energy of the body rotation 
is much greater than the control vector magnitude, 
the resistance of the medium is assumed to be weak 
of the infinitesimal order ε, and the cavity is filled 
with highly viscous fluid. 

The value k2 = 1 is associated with the equality 
2HA2 = G2, which corresponds to the separatrix of 
the Euler–Poinsot motion. Equation (16) describes 
the averaged motion of the endpoint of the kinetic 
moment vector G on a sphere of radius G. Notice 
that the evolution of k2 is affected only by the torque 
of the viscous fluid in the cavity, and, because this 
equation is integrated independently, the influence 
of the torque of the viscous fluid in the cavity, the 
control moment, and the resistance moment is par-
tially separated. An analysis of Eq. (16) shows that 
there are no stationary values of k except for k = 0 
and k = 1. 

 
4. NUMERICAL CALCULATION 

 

4.1 The dimensionless differential equation of 
the motion 

 

We reduce Eq.(15) and (16) and the differential 
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equation for b = const the kinetic moment for to a 
dimensionless form. As the characteristic parame-
ters of the problem, we use the value of the kinetic 
moment at the initial time G0 = G(t0) and the time T 
(12) 

 

1
0G GG 1t tT , .     

 

The value of the dimensionless kinetic energy is 
defined (see [1]) as  

 

2
1 0G2H HA .       

 
 

We obtain a dimensionless system in the form  
 

0

b
G T

G

 
 

 
dG

dt
  

 ,     (17) 

 2 22
0 1 3
3 2 23

PTG G A Adk

dt A A A


 




1 2 3     

 

2)(1 ) [(1 ) (1k


     


2 ( )
(1 ) ]

( )

E k
k

K k


    


,  

 

0dt GG 

 

2
2

dH bH
T H


    
  

     
2 2
0 1 3 1 2 2 3

3 2 2 2
1 2 3

2
3 1 3 2( )( ) ( )A A A k V k 

( ) ( 2)A A A k U  

4 ( )( )( )

3

PG H A A A A A A

A A A S k

  
 



 2 1 ( )A A A U k     

   

 

  

 

 
 

2 2
1 2 3 3 2 1( ) ( )A A A k k 

2 2
3 1 2 1 2 3( )( ) (1 2 ) ( )A A A A A A k U k k    

 

  . 

 

Here, we performed averaging because expres-
sions (13) and (14) imply that H and k2 are slow 
variables.  

 
4.2 A numerical integration of the system 

 
We make a numerical integration of system (17) 

over the interval [0, 1], which corresponds to com-
plete body deceleration. The initial function values 
for this calculation were Ĝ(0) = G0 = 1, Ĥ(0) = 1, 
and k2(0) ≈ 1. The moments of inertia have the val-
ues (see [1]): A1 = 8, A2 = 6, and A3 = 4. The calcula-
tions were performed for various values of λ, b, and 
P, which makes it possible to study the influence of 
different force factors on the character of the rigid 
body deceleration. For each case, we first calculated 
the deceleration time and then the characteristics of 
the body motion in the corresponding time interval.  

 

 
 

Fig. 1 – Changing magnitude of the kinetic moment for differ-
ent λ 

 
Figures 1 and 2 illustrate the numerical analysis 

for P = 10-1, b = 10-1, and λ = 0.5, 10-1, 10-2 (curves 
1, 2, and 3, respectively). It is seen that the decrease 
in the moment of medium resistance forces leads to 
a decreased gradient of the body deceleration and an 
almost linearly dependence of the kinetic moment 
(curve 3 in Fig. 1) Figures 3 and 4 show the results 
of calculations for P = 10-1, λ = 10-1, and b = 10-2, 
5•10-2, 5•10-1 (curves 1, 2, and 3, respectively).  

 

 
 

Fig. 2 – Changing magnitude of the kinetic energy for 
 different λ 

 
It is seen that the increase in the moment of con-

trol forces (curve 3 in Fig. 4) leads to a speedup of 
the body deceleration and an almost linearly chang-
ing magnitude of the kinetic moment at large values 
of b (curve 3 in Fig. 3). 

The change of P from 1 to 10-2 has no effect on 
the general behavior of the functions Ĝ = Ĝ(t) and 
Ĥ = Ĥ(t) because the torque of the viscous fluid in 
the cavity does not appear in the first equation of 
system (17) and its effect on the change of the ki-
netic energy is smaller than the influence of the 
moment of resistance forces and the control mo-
ment. 
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Fig. 3 – Changing magnitude of the kinetic moment for differ-
ent b 

 
The numerical results show that, for the values of 

λ, b, and P indicated above, the module of elliptic 
functions k2 insignificantly decreases from around 1 
to 0.9996. 

 

 
 

Fig. 4 – Changing magnitude of the kinetic energy for  
different b 

 
5. CONCLUSION 

 

The problem of time-optimal deceleration of rota-
tions of a dynamically nonsymmetric quasirigid body 
in a resistive medium was studied analytically and 
numerically. The asymptotic approach made is possi-
ble to determine the control, evolutions of the square 
of the magnitude of the elliptic functions modulus k2, 
and dimensionless kinetic energy and kinetic mo-
ment. The qualitative properties of the optimal mo-
tion were found. 

According to numerical computation for asym-
metric body under the action of the torques of forces 
of a viscous fluid in a cavity showed that the behavior 
of the kinetic energy function depends on the ratio of 
dimensionless coefficients characterizing these dis-
turbing torques, and also depends on the characteris-
tics of controlled motion. The deceleration of the 
rigid body occurs, when essential influence of the 
torque of a viscous liquid is. 
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АКТИВНЕ ГАЛЬМУВАННЯ ОБЕРТАЛЬНИХ РУХІВ ДИНАМІЧНО  
НЕСИМЕТРИЧНОГО КВАЗИТВЕРДОГО ТІЛА 

 

Я.С. Зінкевич, к.ф.-м.н. 
 

Одеська державна академія будівництва та архітектури, 
 вул. Дідріхсона,4 , 65029, Одеса, Україна, zinkevych@ogasa.org.ua 

 

Досліджено задачу оптимального за швидкодією гальмування обертань динамічно неси-
метричного твердого тіла. На тверде тіло діє гальмуючий момент сил лінійного опору сере-
довища. Керування обертаннями проводиться за допомогою моменту сил, обмеженого за 
модулем. Визначено оптимальний закон керування для гальмування обертань твердого тіла 
у формі синтезу і фазові траєкторії. Керований рух являє собою рух типу Ейлера-Пуансо із 
змінною за часом величиною кінетичного моменту тіла. 

Ключові слова: оптимальне гальмування, середовище з опором, асиметричне тіло, по-
рожнина.  

 
 
 

АКТИВНОЕ ТОРМОЖЕНИЕ ВРАЩАТЕЛЬНЫХ ДВИЖЕНИЙ ДИНАМИЧЕСКИ 
 НЕСИММЕТРИЧНОГО КВАЗИТВЕРДОГО ТЕЛА 

 

Я.С. Зинкевич, к.ф.-м.н. 
 

Одесская государственная академия строительства и архитектуры, 
ул. Дидрихсона,4 , 65029, Одесса, Украина, zinkevych@ogasa.org.ua 

 

Исследована задача оптимального по быстродействию торможения вращений динамиче-
ски несимметричного твердого тела. На твердое тело действует тормозящий момент сил 
линейного сопротивления среды. Управление вращениями производится с помощью мо-
мента сил, ограниченного по модулю. Определены оптимальный закон управления для тор-
можения вращений твердого тела в форме синтеза и фазовые траектории. Управляемое 
движение представляет собой движение типа Эйлера-Пуансо с изменяющейся по времени 
величиной кинетического момента тела. 

Ключевые слова: оптимальное торможение, сопротивляющаяся среда, асимметричное 
тело, полость. 
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