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ACTIVE DECELERATION OF ROTATIONAL MOTIONS OF
A DYNAMICALLY ASYMMETRIC QUASIRIGID BODY
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In this article a minimum-time problem of deceleration of rotations of a free rigid body is stud-
ied analytically and numerically. It is assumed that a body contains a spherical cavity filled with
highly viscous fluid. The body is subjected to a retarding torque of viscous friction. It is assumed
that such body is dynamically asymmetric. An optimal control law for deceleration of rotations of
the body is synthesized, and the corresponding time and phase trajectories are determined.

The asymptotic approach made it possible to determine the control evolutions of the magnitude
squared of the elliptic functions modulus k2, dimensionless kinetic energy and kinetic moment.
The qualitative properties of the optimal motion were also found.

The obtained results allow us to build a synthesis of the optimal deceleration of rotations of
satellites and spacecrafts. They can be used to analyze dynamics of controlled spacecrafts.
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1. INTRODUCTION

Analysis of the motion of hybrid systems (i.e.,
objects containing elements with distributed and
concentrated parameters) is of interest both theoreti-
cally and practically. This analysis can be done
within the framework of the theory of singularly
perturbed problems. Important results were obtained
for systems containing quasi-rigid bodies. Com-
bined rotational and translational motions of these
systems are close (under certain conditions) to the
motion of absolutely rigid bodies. The influence of
non-ideal features are reduced to the effects of the
temporal boundary layer type and to additional per-
turbing moments in the Euler equations of angular
motion of a fictitious rigid body after the completion
of transient processes. The analysis of motions of a
rigid body with a cavity filled with a viscous fluid
and in a resistive medium had received much atten-
tion [1-6]. The control of rotations of quasi-rigid
bodies using concentrated (applied to the frame)
torques received less attention. Researchers man-
aged to distinguish a class of systems leading to
smooth controls making it possible to apply singular
disturbance methods without accumulation of
boundary layer type errors appearing in the case of
discontinuous (for example, bang-bang) controls [7—
9]. In this paper, we investigate the problem of time-
optimal deceleration of rotations of a dynamically
non-symmetric body with a spherical cavity filled
with highly viscous fluid (for small Reynolds num-
bers). In addition, the rigid body is subjected to the
action of a small retarding torque of linear resistance
of the medium. The rotations are controlled by a

bounded torque, which can be exerted by vernier jet
engines [7]. The model under consideration general-
izes the results obtained earlier in [7—11]. The prob-
lem of optimal deceleration of rotations of a dy-
namically symmetric body containing a viscous—
elastic element and a cavity filled with fluid is stud-
ied in [8]. The problem of time-optimal deceleration
of rotations of a dynamically symmetric rigid body
with a spherical cavity filled with highly viscous
fluid and a moving mass attached to the body by an
elastic joint with quadratic dissipation is considered
in [9]. The problem of optimal deceleration of rota-
tions of a dynamically symmetric body with a cavity
filled with highly viscous fluid is considered in [10],
where the rigid body is subjected to a small torque
of viscous friction of the external medium. The
problem of time-optimal deceleration of rotations of
a dynamically asymmetric body in a resistive me-
dium is considered in [11]. Approximate solutions
of perturbed problems of time-optimal deceleration
of rotations of rigid bodies about the center of mass
(including objects with internal degrees of freedom)
with applications to the spacecraft and aircraft dy-
namics were obtained in the monograph [7]. There,
the deceleration of bodies having a cavity with vis-
cous fluid was studied. The cases of axisymmetric
and asymmetric (in the undisturbed state) bodies
with a spherical cavity filled with highly viscous
fluid were considered. The deceleration of perturbed
rotations of a rigid body close to a spherically sym-
metric one under the action of the torque exerted by
the linear resistance of the medium was analyzed.
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2. STATEMENT OF THE PROBLEM
2.1 The equations of controlled rotations

We consider a dynamically nonsymmetric rigid
body with moments of inertia satisfying, for definite-
ness, the inequalities 4; > A4, > A4;. Based on the ap-
proach described in [7], the equations of controlled
rotations projected on the axes of the body-related coor-
dinate system (the Euler equations) can be expressed as
[1,4,5,7]

Jo +[oxJo]|=M"+M" +M° (1)

Here, ®=(p, g, r) is the vector of absolute angular
velocity, J = diag (4, A, A3) is the tensor of body iner-
tia, M" is the vector of control torque, M is the dissipa-
tion torque, and M is the torque of viscous fluid in the
body cavity. The kinetic moment of the body is deter-
mined in the standard way as

G=Jo, G=(G1,G2,G3),
G =A4p, G,=4,q, Gy =47,

where G = (G* + G,* + G5))"” is its magnitude.

To simplify the problem, we introduce structural
constraints into system (1); in particular, we assume that
the feasible values of the control torque M" belong to a
sphere [7]). This assumption is not inconsistent with the
mass distribution and shape of the rigid body and is
often used in attitude control problems. It is also be-
lieved that the diagonal tensor of the external resistance
torque is proportional to the moment of inertia tensor;
i.e., the dissipation torque is proportional to the kinetic
moment

M’ =-\Jo. )

Here, A is a constant coefficient depending on the
medium properties. The resistance acting on the body is
represented by a pair of forces. In this case, the magni-
tude of projections of the moment of this pair on the
major axes of body inertia are A4 \p, AM»q, AM;r and [4,
5]. This assumption is not contradictory.

Next, we assume that the cavity is filled with highly
viscous fluid; 1.e., v>>1 (1)'1 ~g<<1), where v is the
kinematic viscosity. The shape of the cavity is supposed
to be almost spherical; then, following [1], for the tensor
P of the viscous forces, we have

P = Pdiag(1,1,1), P =8mpa’ /(5259),  (3)

where p, v are the fluid density and kinematic viscosity,
respectively; and a is the cavity radius.

The tensor P, which depends only on the cavity shape,
characterizes the internal dissipative torque in the quasi-
static approximation due to the viscous fluid in the cav-
ity. For simplicity, Egs. (1) use the so-called scalar ten-
sor defined by a single scalar P> (. The components of
this tensor have the form P;=P§;, where §; are the
Kronecker symbols (the tensor P has this form if the
cavity is spherical, for example). If the cavity is signifi-
cantly nonspherical, there are considerable difficulties in
determining the tensor components.

The admissible values of the moment M of the con-
trol forces are assumed to be bounded by the sphere

M" =bu |u|<1;b=b(t,0), )

0<b, <b<b <o,

where b is a scalar function bounded in the domain of
variation of its arguments ¢ and G according to condi-
tions (4). This domain is given a priori or can be esti-
mated from the initial data for G (G(t) = Go) by inte-
grating Eq. (1) with respect to ®. Below, we suppose
that b= b (¢, G) (or b = b(¢) or b = const).

2.2 The problem of time-optimal deceleration

We pose the problem of time-optimal deceleration
of rotations

o(,)=0", oT)=0, T — min,,

u|£1. &)

It is required to find an optimal control u = u(t, ®),
the corresponding trajectory (¢, fy, ), the time
T=T(t, ), and the Bellman function W= T{(¢, ).
Based on dynamic programming and the Schwarz ine-
quality, under the simplifying condition on the coeffi-
cient b (b= b(t, G) = by(t, G), where the zero subscript
will be omitted below) a time-optimal control is con-
structed in the form (see [7])

M, =-bApG™, M, =-bAqgG™", (6

M, =-bAyrG™, b=b(t,G).

With regard to external force factors, the torque
of viscous fluid in the cavity M is determined as

(see [1])

pol "
M =P, |, 7)
Y
my
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where

b*) 2x 1 b
=p| M+ |+===p+—| A+—
" p[ sz ¢’ Al( G]X

Go
x(3qr(A3—A2)+1 3;’ q(a§1+a§2)—Groc32J+

— 053

P 2
A LT A )~ A )

Ay (A~ ) (A — Ay + 4) ]

The expressions for m, and m; are obtained from m,
in (7) by a cyclic permutation of A, 4>, A; and p, g, r.
The coefficients A*+5%/G>, A+b/G, and 2\b/G in
m; (i=1, 2, 3) remain unchanged, and the terms contain-
ing 03, O3, 03,° + 03,” have a similar form. The direc-
tion cosines o, are expressed in terms of the Euler an-
gles ¢, y, and 0 according to well-known formulas [12].
Neglecting the influence of M“ and M" on M, we ob-
tain the torque of viscous fluid in the cavity in the form

P
44,4,
quz(Al — A, Ay, — Ay + A4) +
_+”2A3 (4 —4)(A; — 4, + 4)

c

X

r2A3(A2 — AN A — A4+ 4y)+
d " C®
|+ A (A —A)( A — 4 — 4,) |
p P2A1(A3 —A)(A4 -4+ 4)+

_+q2A2(A2 — A4 -4, - 4) |

accurate to a first-order infinitesimal .

We consider this expression only in the first approxi-
mation. The equations of controlled motion (1) simpli-
fied on the basis of expression (8) in projections on the
major central axes of inertia have the form:

. A
Ap+(A4;—4))gr=- l?p—kAlp+

+ p[quz(Al_Az)(Az_A3+A1)+

44,4
+12 Ay (A = Ay)( Ay — Ay + Al):|,

A+ (A — 4y pr= —b%—mzw

+ Q[V2A3(A2_A3)(A3_A1+Az)+

A1A2A3
+P A (Ay = AN A — Ay + 4y) ],

y
i+ (4, — 4) pq :—b%—mw

+

2
LA Ay )

+q7 Ay (A = 4,)( Ay = 4+ 4) |. )

The kinematic relations are omitted because Eqgs. (9)
form a closed system. These equations are further ana-
lyzed.

3. SOLUTION OF THE OPTIMAL DECELERA-
TION PROBLEM

Let us note that the torque exerted by viscous
fluid in the cavity is internal, while the torque of the
linear drag of the medium is external. Multiplying
the first equation in (8) by G, the second equation
by G,, and the third equation by Gj, and summing
them, we obtain a scalar equation to be integrated

G=-b(t,G)-L1G, G(t,)=G". (10)

Upon solving Cauchy problem (10), we obtain
from the condition of stopping the rotation (5) the
required expression for the time 7= 7(t, Gy) and
the Bellman function W(¢t, G) = 1(t, G).

Recall that G = Jw.

In the general case, for an arbitrary function
b=>b(t, G) in (10), the analytical integration of the
Cauchy problem is complicated; however, it can be
solved numerically. Equations (10) imply that the
evolution of the magnitude of the kinetic moment G
is affected by the control moment and the medium
drag. The internal torque of the viscous fluid in the
cavity has no effect. If b = b(¢) (i.e., the function b(¢)
is independent of G), we obtain the solution of
boundary problem (10)

G(t)=G  exp(-1(1—1,))- jb(r)exp(—x(t —1))dt(11)

fy

T
where G” =exp(-LAt,) [ b(t)exp(rt)dt

tO

According to (4), Eq. (11) is solvable with re-

spect to the unknown 7, which leads to the construc-
tion of the time-optimal solution. Here, ¢ is the cur-
rent time of deceleration and 7 is the optimal time.
For b= const and ¢, =0, the solutions of equation
(2.1) and boundary problem (11) are written as

G(1) = %[(GOK +b)exp(~Ar) - b} . (12)
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Tzlln(GO&Jrl).
A b

Next, we consider in detail case (12). Let us mul-
tiply the first equation in (8) by p, the second equa-
tion by ¢, the third equation by 7, and sum the re-
sults. The resulting expression for the derivative of
the kinetic energy H is

_2h 20MH +
G A A, 4

x(Ay— A = A,)+ P22 (4 —4) (4 — 4 — 4)+
1q*r (4 -4, ) (4 - 4, —A3)] (13)

H.:

| P20 (4~ 4, ) x

Consider an undisturbed motion (b =A=¢=0).
In the absence of perturbations, the rotation of the
rigid body is a Euler—Poinsot motion. The variables
G and H become constant and o, y, and 0 are func-
tions of time ¢. The slow variables in the perturbed
motion are G and H, and the fast variables are the
Euler angles o, v, and 0.

Consider a motion under the condition
2HA, > G* > 2HA, corresponding to the trajectories
of the kinetic moment vector, which envelope the
major torque axis Oz;. Define

(4, — 4,)(2HA - G?)

k=
(4 —4,)(G* ~2HA4)

(0<k*<1), (14)

which is the module of elliptic functions describing
this motion and is a function of the kinetic moment
G and the kinetic energy H (in the case of unper-
turbed motion, it is a constant).

To construct the averaged first-approximation
system of equations, we substitute the solution of
the unperturbed Euler—Poinsot motion into the right-
hand side of Eq. (13) and average over the variable
vy and then over time ¢ taking into account the de-
pendences of ¢ and 6 on ¢. Here, we retain the nota-
tion for the slow variables G and H. As a result, we
obtain

dH 2bH

= _0)\H-
dt G
_4PH2(A1 — A3)(A1 — Az)(Az — A3) %
347 45 A;S* (k)

x| Ay (4 = ) A + 4y = A) [ KV ()= U(K) |+
FA (A, = A)( Ay + Ay = A)| (7 =2)U (k) + k> |+

A5 (4 = A)( A + Ay = A)[ (1= 267U () + K ]} (1)

whereU(k) =1— E(k) / K (k) , V(k) =1+ E(k) / K (k).
S (k) =[ 4~ A + (4~ 4,) T

Here, K(k) and E(k) are the complete elliptic in-
tegrals of the first and second kind, respectively
[13]. Equation (15) implies that the resistance of the
medium and the torque of the viscous fluid in the
body cavity as well the control moment cause the
evolution of the kinetic energy H of the body. The
expression in the braces on the right-hand side of
equation (15) is positive (for 4, > A, > A3) because
of the inequalities (1 — k2)K < E < K (see [13]). Con-
sequently, dH /dt <0 because H>0; i.e., H is a
strictly decreasing variable for any &° € [0, 1]. Note
that Eq.(15) has an essential singularity as G — 0.

Differentiating expression (14) for &* with regard
to (15), we obtain a the differential equation

di’ _ PG (A — Ay)[ Ay (A + Ay — 4y )+ 2.4, 4, |
dt 34 A7 A}

X

< d(1— 22N i1 2, E(k)
{(1 (1 -k7)-[d x)+(1+x)k]K(k)},(l6)

where y = 3A2[(A12 + A32) — A, (4 + 4;)] ‘
(4 — A)[A, (A4 + 43 — 4,) + 24, 45]

Equations (15) and (16) were obtained by the
method of averaging [1, 2, 7]. This corresponds to
the fact that the kinetic energy of the body rotation
is much greater than the control vector magnitude,
the resistance of the medium is assumed to be weak
of the infinitesimal order €, and the cavity is filled
with highly viscous fluid.

The value k* =1 is associated with the equality
2HA, = G*, which corresponds to the separatrix of
the Euler—Poinsot motion. Equation (16) describes
the averaged motion of the endpoint of the kinetic
moment vector G on a sphere of radius G. Notice
that the evolution of k* is affected only by the torque
of the viscous fluid in the cavity, and, because this
equation is integrated independently, the influence
of the torque of the viscous fluid in the cavity, the
control moment, and the resistance moment is par-
tially separated. An analysis of Eq. (16) shows that
there are no stationary values of & except for k=0
and k= 1.

4. NUMERICAL CALCULATION

4.1 The dimensionless differential equation of
the motion

We reduce Eq.(15) and (16) and the differential
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equation for b = const the kinetic moment for to a
dimensionless form. As the characteristic parame-
ters of the problem, we use the value of the kinetic
moment at the initial time Gy = G(%;) and the time T

(12)
G=GG,", 7=

The value of the dimensionless kinetic energy is
defined (see [1]) as

H=2HAG,".

We obtain a dimensionless system in the form

aG_[L 6 T, (17)
di G,
dik* PTG’G; (4 - 4)
— = X
d 34’443
E(k)
1-A -k =[0-y) + A+ k> ] —=+¢,
X{( 1 )—[A=x)+A+%) ]K(k)}
d—13’=— 20H o0+
di GG,
+4PG§I:12(A1 _A3)(A1 _Az)(Az _A3) %
34 44387 (k)

x{A2 (A = A)(A + A = ) KV (k) -U (k) |+
FA (A, = A)( Ay + Ay = A)[ (7 =2U (k) + K> |+

A (4= )+ Ay = ) (=260 0 +KJf ).

Here, we performed averaging because expres-
sions (13) and (14) imply that H and & are slow
variables.

4.2 A numerical integration of the system

We make a numerical integration of system (17)
over the interval [0, 1], which corresponds to com-
plete body deceleration. The initial function values
for this calculation were G(0)=Go=1, H(0)=1,
and £*(0) = 1. The moments of inertia have the val-
ues (see [1]): A1 =8, A, =6, and 45 = 4. The calcula-
tions were performed for various values of A, b, and
P, which makes it possible to study the influence of
different force factors on the character of the rigid
body deceleration. For each case, we first calculated
the deceleration time and then the characteristics of
the body motion in the corresponding time interval.

) ’ 04 ’ 08

12 f‘

Fig. 1 — Changing magnitude of the kinetic moment for differ-
ent A

Figures 1 and 2 illustrate the numerical analysis
for P=10", =10", and A=0.5, 10", 10 (curves
1, 2, and 3, respectively). It is seen that the decrease
in the moment of medium resistance forces leads to
a decreased gradient of the body deceleration and an
almost linearly dependence of the kinetic moment
(curve 3 in Fig. 1) Figures 3 and 4 show the results
of calculations for P= 10'1, A=10", and b= 10'2,
54102, 5¢10°! (curves 1, 2, and 3, respectively).

H
12

0 Y ' 08 ' 12§

Fig. 2 — Changing magnitude of the
different A

kinetic energy for

It is seen that the increase in the moment of con-
trol forces (curve 3 in Fig. 4) leads to a speedup of
the body deceleration and an almost linearly chang-
ing magnitude of the kinetic moment at large values
of b (curve 3 in Fig. 3).

The change of P from 1 to 107 has no effect on
the general behavior of the functions G = G(f) and
H = H(f) because the torque of the viscous fluid in
the cavity does not appear in the first equation of
system (17) and its effect on the change of the ki-
netic energy is smaller than the influence of the
moment of resistance forces and the control mo-
ment.
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G

=
¥

0 ’ 0.4 ’ 08 12 3

Fig. 3 — Changing magnitude of the kinetic moment for differ-
ent b

The numerical results show that, for the values of
A, b, and P indicated above, the module of elliptic
functions k* insignificantly decreases from around 1
to 0.9996.

H
1.2

0.8_ NG e B S R ................... . ...................

T o s

0 ’ 0.4 ’ 08 : T

Fig. 4 — Changing magnitude of the
different b

kinetic energy for

5. CONCLUSION

The problem of time-optimal deceleration of rota-
tions of a dynamically nonsymmetric quasirigid body
in a resistive medium was studied analytically and
numerically. The asymptotic approach made is possi-
ble to determine the control, evolutions of the square
of the magnitude of the elliptic functions modulus i°,
and dimensionless kinetic energy and kinetic mo-
ment. The qualitative properties of the optimal mo-
tion were found.

According to numerical computation for asym-
metric body under the action of the torques of forces
of a viscous fluid in a cavity showed that the behavior
of the kinetic energy function depends on the ratio of
dimensionless coefficients characterizing these dis-
turbing torques, and also depends on the characteris-
tics of controlled motion. The deceleration of the
rigid body occurs, when essential influence of the
torque of a viscous liquid is.
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AKTUBHE I'AJIbBMYBAHHSA OBEPTAJIBHUX PYXIB IUHAMIYHO
HECUMETPUYHOI'O KBABUTBEPJ10I'O TIUIA

SA.C. 3inkeBu4, K.().-M.H.

Ooecvka deporcasna akademisa OyOieHUYmMea ma apximexmypu,
syn. Jiopixcona, 4, 65029, Ooeca, Ykpaina, zinkevych@ogasa.org.ua

JociimKkeHo 3a/1ady ONTUMAaIbHOTO 33 IIBHIKOIEI0 raJbMyBaHHs 00€pTaHb TUHAMIYHO HECH-
METPUYHOTO TBepAOTO Tina. Ha TBepme Tiso nie raapMyrodnii MOMEHT CHUI JIIHIHHOTO OTIOpY cepe-
noBunia. KepyBaHHS 0OSpTaHHAMH MPOBOIHUTHCS 33 JOIIOMOI'OK0 MOMEHTY CHIJI, OOMEXEHOTo 3a
MozayneM. Bu3HaueHO onTHManIbHUNA 3aKOH KepyBaHHS Ul TAIbMyBaHHSI 00epTaHb TBEPJOro Tia
y dopmi cuHTE3y 1 (a3osi Tpaekropii. KepoBanuii pyx sBisie coboro pyx tuny Eftnepa-Ilyanco i3
3MIHHOIO 32 YaCOM BEJTMYNHOIO KIHETUIHOTO MOMEHTY TiJa.

Karouosi ciioBa: ontuMmanbHe ralbMyBaHHs, CEPEIOBHUIIE 3 OIIOPOM, aCUMETPUYHE TiJIO, I10-
POXKHUHA.

AKTUBHOE TOPMOKEHHME BPAIIIATEJBHBIX IBUKEHUN TUHAMUYECKHA
HECUMMETPHUYHOI'O KBASUTBEPJAOI'O TEJIA

S1.C. 3unkeBHY, K.(.-M.H.

Odecckas 20Cy0apcmeeHHas akademusi CMpoUmeiIbCmed U ApXUumeKniypbl,
ya. Huopuxcona, 4, 65029, Ooecca, Yrkpauna, zinkevych@ogasa.org.ua

Hccnenosana 3a1aua ONTAMAIILHOTO MO OBICTPOICHCTBHIO TOPMOXKCHHS BPAICHHUH TUHAMUYC-
CKM HECUMMETPUYHOro TBepaoro tena. Ha TBeppoe Teio AelCTBYET TOPMO3AIUNA MOMEHT CHIL
JIMHEHHOT0 CONPOTHUBJICHUS Cpeibl. YTpaBlieHUE BPAIEHUSIMU MPOU3ZBOJUTCS C MOMOIIbIO MO-
MEHTa CWJI, OTPaHUYCHHOT0 10 Moy 0. OmnpeaeneHbl ONTUMANIbHBIN 3aKOH yIpaBIeHUs AJis TOP-
MOJKCHHS BPAIICHUN TBEPJOro Teia B (GopMme cHHTe3a U (ha30BbIC TPACKTOPHH. YTpaBIsIeMOe
JBIDKEHUE TIPENICTABIIET CO00M nBImKeHne Trma Jinepa-IlyaHco ¢ n3MeHSIomeHcs o BpeMeH!
BEJIMYMHON KMHETHYECKOTO MOMEHTA Tea.

KuiroueBble ci1oBa: onTuManbHOE TOPMOXKEHUE, COMPOTUBIISIOIIASACA CPENA, ACUMMETPUYHOE
TEJ0, ITOJIOCTh.
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