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We present an improved generalized approach to the analysis and prediction of the nonlinear dynamics of
chaotic systems based on the methods of nonlinear analysis and neural networks. As the object of study are
the hydroecological systems (pollution dynamics). Use of the information about the phase space in the simu-
lation of the evolution of the physical process in time can be considered as a major innovation in the model-
ing of chaotic processes in the hydroecological systems. This concept can be achieved by constructing a pa-
rameterized non-linear function F (x, a), which transform y (n) to y(n+1) = F[y(n),a], and then use different
criteria for determining the parameters a . Firstly to build the desired functions it is offered using the wavelet
expansions. Further, since there is the notion of local neighborhoods, we can create a model of the process
occurring in the neighborhood, at the neighborhood and by combining together these local models to con-
struct a global non-linear model to describe most of the structure of the attractor.
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1. INTRODUCTION

One of the most actual and important problem of the
applied ecology, hydroecology and environment protec-
tion is connected with correct quantitative description of
pollution dynamics in different ecological and hy-
droecological systems. Naturally, the problem concerns
as different spatial as temporal scale levels [1-20]. As an
example of problems whose solution lies in the problems
considered in the article, it should be noted the analysis
and prediction of the influence of anthropogenic impact
on the water resources, river’s systems and generally
specking hydroecological systems. Earlier it has been
considered in details (see [1,14,18-20]) a problem of
using special mathematical technique for analysis and
prediction of the influence of anthropogenic impact on the
atmosphere of the industrial city , the development of
adequate schemes modeling the properties of the fields of
concentration of the air basin industrial city [10]. As it has
been indicated in Ref. [1] naturally, the task list for study-
ing the dynamics of complex systems is not limited to the
above examples. It is not difficult to understand that ex-
amples of such systems are the atmosphere, turbulent
flows in a variety of environments, physical and chemical
systems, biological populations, and finally, the society as
a communication system and its subsystems: economic,
political and other social systems [1-10].

Most important, the fundamental issue in the descrip-
tion of the dynamics of the system is its ability to forecast
its future evolution, i.e. predictability of behavior. Re-
cently (see Refs.[1-16]) the theory of dynamical systems
is intensively developed, and, in particular, speech is
about the application of methods of the theory to the
analysis of complex systems that provide description of
their evolutionary dynamics by means solving system of
differential equations. If the studied system is more com-
plicated then the greater the equations is necessary for its

adequate description. Even microscopic deviation be-
tween the two systems at the beginning of the process of
evolution leads to an exponential accumulation of errors
and, accordingly, their stochastic divergence (as a result,
the inability to accurately predict changes in meteorology
forecast for a sufficiently long period of time). During the
analysis of the observed dynamics of some characteristic
parameters of the systems over time it is difficult to say to
what class belongs to the system and what will be its
evolution in the future.

In recent years for the analysis of time series of fun-
damental dynamic parameters there are with varying
degrees of success developed and implemented a variety
of methods, in particular, the nonlinear spectral and trend
analysis , the study of Markov chains, wavelet and multi-
fractal analysis, the formalism of the matrix memory and
the method of evolution propagators etc (see Ref.
[1,15,16,18-20]). Most of the cited approaches are de-
fined as the methods of a chaos theory and stochastic
dynamical systems. In the latter methods have been de-
veloped that allow for the recording of time series of one
of the parameters to recover some dynamic characteristics
of the system. In recent years a considerable number of
works, including an analysis from the perspective of the
theory of dynamical systems and chaos, fractal sets, is
devoted to time series analysis of geophysical characteris-
tics, environmental, etc. systems [1-10]. In a series of
papers [10-18] the authors have attempted to apply some
of these methods in a variety of environmental and hy-
drodynamic problems.

In this work, using the preliminary results [1,18] (see
also Refs. [14,19,20]) we present an improved generalized
approach to the analysis and prediction of the nonlinear
dynamics of chaotic systems based on the methods of
nonlinear analysis and neural networks. As the object of
study are the hydroecological systems (pollution dynam-
ics). Use of the information about the phase space in the
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simulation of the evolution of the physical process in time
can be considered as a major innovation in the modeling
of chaotic processes in the hydroecological systems. This
concept can be achieved by constructing a parameterized
non-linear function F (x, a), which transform y (n) to
y(n+1) = F[y(n),a], and then use different criteria for
determining the parameters a . Firstly to build the desired
functions it is offered using the wavelet expansions. Fur-
ther, since there is the notion of local neighborhoods, we
can create a model of the process occurring in the
neighborhood, at the neighborhood and by combining
together these local models to construct a global non-
linear model to describe most of the structure of the at-
tractor.

2. METHOD

2.1 Basic idea and construction of the model predic-
tion for hydroecological system

The basic idea of the construction of our approach to
prediction of chaotic properties of complex systems has
been considered earlier (see, for example Ref. [1,18]) and
following to these papers, it is in the use of the traditional
concept of a compact geometric attractor in which evolves
the measurement data, plus the implementation of neural
network algorithms. Earlier this approach has been devel-
oped and used in problem of description of the dynamics
of atmospheric systems such as air basein pollution pollu-
tion of industrial city. Here we consider the hydroecologi-
cal system, more exactly, the corresponding pollution
dynamics. Shortly the analogous example has been con-
sidered in Ref. [1], namely, speech was about the dynam-
ics of the nitrates concentrations in the Small Carpathians
river’s watersheds.

As the basis idea is remained the same, we shortly
give it following to ref.[1,18]. The meaning of the concept
is in fact a study of the evolution of the attractor in the
phase space of the system and, in a sense, modeling
("guessing") time-variable evolution.. From a mathemati-
cal point of view, it is a fact that in the phase space of the
system an orbit continuously rolled on itself due to the
action of dissipative forces and the nonlinear part of the
dynamics, so it is possible to stay in the neighborhood of
any point of the orbit y (n) other points of the orbit y (n),
r=1, 2, ..., Np, which come in the neighborhood y (n) in a
completely different times than .

Of course, then one could try to build different types
of interpolation functions that take into account all the
neighborhoods of the phase space and at the same time
explain how the neighborhood evolve from y (1) to a
whole family of points about y (n+1).

Use of the information about the phase space in the
simulation of the evolution of some geophysical (envi-
ronmental, etc.) of the process in time can be regarded as
a fundamental element in the simulation of random proc-
esses. In terms of the modern theory of neural systems,
and neuro-informatics (e.g. [11]), the process of modeling
the evolution of the system can be generalized to describe
some evolutionary dynamic neuro-equations (miemo-
dynamic equations).

Imitating the further evolution of a complex system as
the evolution of a neural network with the corresponding
elements of the self-study, self- adaptation, etc., it be-
comes possible to significantly improve the prediction of
evolutionary dynamics of a chaotic system. Considering
the neural network (in this case, the appropriate term
"geophysical" neural network) with a certain number of
neurons, as usual, we can introduce the operators S; syn-
aptic neuron to neuron u; u;, while the corresponding
synaptic matrix is reduced to a numerical matrix strength
of synaptic connections: W = | | wj | |. The operator is
described by the standard activation neuro-equation de-
termining the evolution of a neural network in time:

N
s; = sign()_wys, —6,), (M
Jj=1

where 1< i <N. Here it is important for us another
proven fact related to information behavior neuro-
dynamical system. From the point of view of the theory of
chaotic dynamical systems, the state of the neuron (the
chaos-geometric interpretation of the forces of synaptic
interactions, etc.) can be represented by currents in the
phase space of the system and its the topological structure
is obviously determined by the number and position of
attractors. To determine the asymptotic behavior of the
system it becomes crucial information aspect of the prob-
lem, namely, the fact of being the initial state to the basin
of attraction of a particular attractor. Modeling each geo-
physical attractor by a record in memory, the process of
the evolution of neural network, transition from the initial
state to the (following) the final state is a model for the
reconstruction of the full record of distorted information,
or an associative model of pattern recognition is imple-
mented. The domain of attraction of attractors are sepa-
rated by separatrices or certain surfaces in the phase
space. Their structure, of course, is quite complex, but
mimics the chaotic properties of the studied object. Then,
as usual, the next step is a natural construction parameter-
ized nonlinear function F (x, @), which transforms:

y() = y(r+1)=F(y(n), a), 2

and then to use the different ( including neural net-
work) criteria for determining the parameters a (see be-
low). The easiest way to implement this program is in
considering the original local neighborhood, enter the
model(s) of the process occurring in the neighborhood, at
the neighborhood and by combining together these local
models, designing on a global nonlinear model. The latter
describes most of the structure of the attractor.

Although, according to a classical theorem by Kolmo-
gorov-Arnold -Moser, the dynamics evolves in a multidi-
mensional space, the size and the structure of which is
predetermined by the initial conditions, this, however,
does not indicate a functional choice of model elements in
full compliance with the source of random data. One of
the most common forms of the local model is the model
of the Schreiber type [3] (see also [10]).

Nonlinear modeling of chaotic processes is based
on the concept of a compact geometric attractor, which
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evolve with measurements. Since the orbit is continually
folded back on itself by the dissipative forces and the non-
linear part of the dynamics, some orbit points y'(k),
r=1,2, ..., Np can be found in the neighbourhood of any
orbit point y(k), at that the points y'(k) arrive in the
neighbourhood of y(k) at quite different times than k.
Then one could build the different types of interpolation
functions that take into account all the neighborhoods of
the phase space, and explain how these neighborhoods
evolve from y (n) to a whole family of points about y (n +
1). Use of the information about the phase space in mod-
eling the evolution of the physical process in time can be
regarded as a major innovation in the modeling of chaotic
processes. This concept can be achieved by constructing a
parameterized nonlinear function F (x, a), which trans-
formy (n) toy (n + 1) = F (y (n), a), and then using dif-
ferent criteria for determining the parameters a. Further,
since there is the notion of local neighborhoods, one could
create a model of the process occurring in the neighbor-
hood, at the neighborhood and by combining together
these local models to construct a global nonlinear model
that describes most of the structure of the attractor.

As shown Schreiber [3], the most common form of
the local model is very simple

s(n+An) = a(()”) + dZA: aﬁ.”)s(n -(j-Dr) 3)
j=l

where A n - the time period for which a forecast has to
be done.

*)
J
squares procedure, involving only points s(k) within a
small neighbourhood around the reference point. Thus,
the coefficients will vary throughout phase space. The fit
procedure amounts to solving (d4 + 1) linear equations for
the (d4 + 1) unknowns.

When fitting the parameters a, several problems are
encountered that seem purely technical in the first place
but are related to the nonlinear properties of the system. If
the system is low-dimensional, the data that can be used
for fitting will locally not span all the available dimen-
sions but only a subspace, typically. Therefore, the linear
system of equations to be solved for the fit will be ill
conditioned.

However, in the presence of noise the equations are
not formally ill-conditioned but still the part of the solu-
tion that relates the noise directions to the future point is
meaningless . Note that the method presented here is not
only because, as noted above, the choice of fitting
requires no knowledge of physics of the process itself.
Other modeling techniques are described, for example, in
[3,10].

The coefficients @', may be determined by a least-

2.2 Wavelets for construction of model prediction for
hydroecological system

It is well known that the wavelets are fundamental
building block functions, analogous to the sine and cosine
functions [22]. Fourier transform extracts details from the
signal frequency, but all information about the location of

a particular frequency within the signal is lost. At the
expense of their locality the wavelets have advantages
over Fourier transform when non-stationary signals are
analyzed [22-26]. Here, we use non-decimated wavelet
transform that has temporal resolution at coarser scales.

The dilation and translation of the mother wavelet
y(?) generates the wavelet as follows

wialt) = 2Pyt~ ).

The dilation parameter j controls how large the wave-
let is, and the translation parameter k& controls how the
wavelet is shifted along the #-axis. For a suitably chosen
mother wavelet y(?), the set {y;};« provides an orthogo-
nal basis, and the function f which is defined on the whole
real line can be expanded as

10)= Tewon)+2

M

dyV (t), 4)

—00

where the maximum scale J is determined by the
number of data, the coefficients ¢, represent the lowest
frequency smooth components, and the coefficients dj
deliver information about the behavior of the function f'
concentrating on effects of scale around 27 near time k x
27. This wavelet expansion of a function is closely related
to the discrete wavelet transform (DWT) of a signal ob-
served at discrete points in time.

In practice, the length of the signal, say #, is finite and,
for our study, the data are available monthly, i.e. the func-
tion s(¢) in Eq. (3) is now a vector f= (f(t)),..., f(t,)) with ¢;
=j/n and i = 1,...,n. With these notations, the DWT of a
vector fis simply a matrix product d = Wf, where d is an n
x 1 vector of discrete wavelet coefficients indexed by 2
integers, dy, and W is an orthogonal n x n matrix associ-
ated with the wavelet basis.

For computational reasons, it is simpler to perform the
wavelet transform on time series of dyadic (power of 2)
length. One particular problem with DWT is that, unlike
the discrete Fourier transform, it is not translation invari-
ant. This can lead to Gibbs-type phenomena and other
artefacts in the reconstruction of a function. The non-
decimated wavelet transform (NWT) of the data (f{#)), ...,
f(t,)) at equally spaced points #; = i/n is defined as the set
of all DWT's formed from the » possible shifts of the data
by amounts i/n; i =1, ..., n.

Thus, unlike the DWT, there are 2 coefficients on the
Jjth resolution level, there are n equally spaced wavelet
coefficients in the NWT

dy=n X2 kil
k=0,...,n1,

on each resolution level j. This results in logy(n) coef-
ficients at each location. As an immediate consequence,
the NWT becomes translation invariant. Due to its struc-
ture, the NWT implies a finer sampling rate at all levels
and thus provides a better exploratory tool for analyzing
changes in the scale (frequency) behavior of the underly-
ing signal in time. These advantages of the NWT over the
DWT in time series analysis are demonstrated in [21]. As
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in the Fourier domain, it is important to assess the power
of a signal at a given resolution. An evolutionary wavelet
spectrum (EWS) quantifies the contribution to process
variance at the scale j and time k. From the above para-
graphs, it is easy to plot any time series into the wavelet
domain. Another way of viewing the result of a NWT is
to represent the temporal evolution of the data at a given
scale. This type of representation is very useful to com-
pare the temporal variation between different time series
at given scale. To obtain the results, smooth signal S, and
the detail signals D; (j =1, ..., J) are

So (t) = kziwCOk(PO,k (t)

and

D)= Yd v (1)

k=—0

The fine scale features (high frequency oscillations)
are captured mainly by the fine scale detail components
Dj and D, . The coarse scale components Sy, D;, and D,
correspond to lower frequency oscillations of the signal.
Note that each band is equivalent to a band-pass filter.
Further one could use the Daubechies wavelet as mother
wavelet. This wavelet is bi-orthogonal and supports dis-
crete wavelet transform. Furthermore, formally the neural
network algorithm is launched, in particular, in order to
make training the neural network system equivalent to
the reconstruction and interim forecast the state of the
neural network (respectively, adjusting the values of the
coefficients).

3. CONCLUSSIONS

Here we have considered an new approach to
nonlinear modeling and prediction of chaotic processes in
hydroecological (pollution dynamics) systems which is
based on two key functional elements. Besides using
other elements of starting chaos theory method the
proposed approach includes the application of the concept
of a compact geometric attractor, and one of the neural
network algorithms, or, in a more general definition of a
model of artificial intelligence. The starting point is a
formal knowledge of the time series of the main dynamic
parameters of a chaotic system, and then to identify the
state vector of the matrix of synaptic interactions | | wij | |
etc. The main difficulty here lies in the implementation
of the process of learning neural network to simulate the
complete process of change in the topological structure of
the phase space of the system and use the output results of
the neural network to adjust the coefficients of the
function display. The meaning of the latter is precisely the
application of neural network to simulate the evolution of
the attractor in phase space, and training most neural
network to predict (or rather, correct) the necessary
coefficients of the parametric form of functional display.
As alternative and addition simultaneously, one should
use our proposal at first to use the wavelet expansion for
construction of the parametrized model prediction
functions. In any case these alternative should be checked

at concrete modelling examples, namely, reproducing
time pollution dynamics in the concrete hydroecological
systems.
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IMPOTHO3UPOBAHME 3BOJIIOIIMOHHON TMHAMUKHA XAOTHYECKHUX CUCTEM HA OCHOBE
METO/I0B HEJIMHEHHOI'O AHAJIN3A 1 HEUPOHHBIX CETEN: IMTPUJIOKEHUE
K JMHAMMUMKE 3AT'PA3HEHUS THAPO3KOJOTI'MYECKNX CUCTEM

0.10. Xeueauyc, 1-p ¢.-M. H., Ipod.

Ooeccruti 20cy0apCcmeeHublil HIKON0UYECKULL YHUSepcument,
ya. Jlveosckasn, 15, 65016, Odecca, Ykpauna , okhetsel@gmail.com

Pa3BuBaeTcsi ycoBepLIEHCTBOBAaHHBII 0OOOIIEHHBIN MOAXOA K aHAIN3Yy M HMPOTHO3UPOBAHUIO HEINH-
HEWHOW IMHAMHUKY XaOTHUECKUX CHUCTEM, OCHOBAHHBI Ha METOAAX HEJIMHEHHOrO aHajau3a U HEWPOHHBIX Ce-
Tel. B xauecTBe 00BEKTA HCCIECIOBAHMS BBICTYIAIOT THAPOIKOIOTHIECKHE CHCTEMBI (BpEMEHHAs AUHAMHKA
3arpsi3HeHus). Vicrionp3oBanue nugopmarmy o Gpa3oBoM MPOCTPAHCTBE IPH MOJIEIHPOBAHIH IBOJIIOLNN (HH-
3MYECKOro Mpoliecca BO BPEMEHH MOXET PAcCMaTPHUBATHCS B KaYeCTBE OCHOBHOTO HOBIIECTBA B MOZIEIHPO-
BaHMM XaOTHYECKUX MIPOLECCOB MPUMEHUTENIFHO K THAPOIKOJIOTHUECKUM CHCTeMaM. B pamkax Merona He-
JMHEWHOTr0 aHaM3a ¥ KOHIEHIIMY I'€OMETPUYECKOr0 aTTPaKTOpa OKA3bIBACTCS BO3MOXKHBIM IIOCTPOCHHE
PA3INYHBIX THIIOB MHTEPHOJIILIMOHHBIX (QyHKINHA, KOTOpbIE IPUHUMAIOT BO BHUMAHUE BCE OKPECTHOCTH (a-
30BOT0 NPOCTPAHCTBA, U 00BACHEHHE IBOIIOLHHU (Ha30BOH TpaeKTOPHH. B KOHKPETHOI peanus3anuy peub UIer
0 TIOCTPOCHHMHU TMApaMEeTPH3UPOBAHHOW HeNmuHEHHON ¢yHkumu F (X, a), KoTopele mpeodpasyroT y (n) B
y(n+1)= F[y(n),a] ¢ mocieayromuM onpeneneHreM mapaMeTpoB a Ha OCHOBE KOHIICTIIHU SKCTpeMyMa U J10-
HOJHUTENIFHO HEHPOCETeBOro MeToia. BriepBble At MOCTPOSHUS HCKOMBIX (pyHKIHH Tpe/yIaraeTcs UCHob-
30BaHUE BEHBIET pa3IokKeHNH. BO3MOXHBIM OKa3bIBAaeTCsI MOCTPOCHUE JIOKAIBHBIX MOJIENICH MIPOrHO3a, OITH-
CBHIBAOIINX IBOJIIOINIO CUCTEMbI B OKPECTHOCTH HEKOH oOsiacT (ha30BOrO MPOCTPAHCTBA C IOCIEAYIOLINM
00beIMHEHNEM JIOKJIBHBIX MOJIEIIeH B III00aIbHYI0 MOJIEIb IIPOrHO3a IBOJIIOIUK Xa0THYECKOI0 aTTapakTopa
CHCTEMBI.

KnrodeBble ci10Ba: THIPOIKOTIOTHUECKUE CUCTEMBI, HETMHEHHBIN aHaN3, HEHPOHHBIE CETH, BPEMEHHbIE
PSB! KOHLICHTPANUH, 3arpsA3HSIOMNE BEIECTBA, IPOTHO3HPOBAHUE

MPOTHO3YBAHHS EBOJIOIIIHOI JAAHAMIKHA XAOTHYHUX CUCTEM HA OCHOBI
METO/IIB HEJTHIHMHOT' O AHAJII3Y 1 HEWPOHHUX MEPEX: 3ACTOCYBAHHSA
40 JUHAMIKH 3ABPYJHEHHS I'TJPOEKOJIOI'TYHUX CUCTEM

0.10. Xenedmiyc, 1-p ¢.-M. H., mpod.

Ooecvruti Oeparcaghull eKoN02IUHUL YHIgepcumen,
eyn. Jlvsiscora, 15, 65016 Ooeca, Vkpaina, okhetsel@gmail.com

Po3BuBaeThCs BIOCKOHANEGHUH y3aralbHEHUH MiAXiJ 10 aHai3y Ta MPOTHO3yBaHHS HENIHIMHOT TMHAMIKA
XaOTHYHHX CHCTEM, 3aCHOBAHHUI Ha METOJaX HEIIHIHHOTO aHami3y i HeHPOHHUX Mepex. B sxocTi 06'ekTa m0-
CJIJKEHHST BUCTYIAIOTh TiAPOEKOJIOTIYHI CHCTeMH (JacoBa JWHaMika 3a0pyaHeHHs). Buxopucranns indop-
Marii nmpo (a3oBHi IPOCTIp MPU MOJIEITIOBaHHI €BOJIOINIT (DI3MIHOTO MPOIIECY B Yaci MOXKeE PO3TIISAATHCS B
SIKOCTi OCHOBHOTI'O HOBOBBEJCHHSI B MOJICJIFOBAaHHI XaOTHYHUX MPOLECIB CTOCOBHO JI0 TiJIPOCKOJIOTIYHHUX CHC-
TeM. B paMkax MeToxy HeJiHIHHOTO aHalli3y Ta KOHIEIIl TeOMETPUYHOrO aTPaKTOPy BHSBIISIETHCS MOMKIIH-
BUM M00Y10Ba Pi3HUX THIIB IHTEPIOIALIHUX QYHKLIH, sKi OepyTh 4O yBark Bci oKonuili Ga30BOro mpocro-
pY, 1 HOsicHeHHsI eBOIOLT (pa30Boi TpaekTOpii. Y KOHKpeTHOI peaizaliii MoBa e mpo modyA0By mapaMeTpi-
30BaHUX HemiHiMHUX ¢yHkHid F (X, a), ski neperBopioioTe y (n) By (n + 1) = F [y (n), a] 3 HacTynmHUM BH-
3HAYCHHSIM MapaMeTpiB a Ha OCHOBI KOHIIEMIIIi eKCTPEMyMy 1 JOZaTKOBO HEHPOCETEBOTO MeToAy. Bmepiie
ULl TOOYZOBH IIYKaHUX (DYHKIIH IIPOIOHY€ETHCS BUKOPHCTAHHS BEHBIET PO3KIAAaHb. MOXKIMBUM BUSBILS-
€ThCsI TO0Y10Ba JIOKAJIBHUX MOJIeJIel MPOTHO3Y, IO ONUCYIOTh €BOJIOLII0 CHCTEMH B OKOJIHIII esskoi o0acTi
(ha30BOrO MPOCTOPY 3 HACTYIHUM 00'€JHAHHAM JIOKIBHUX MOJIEJIel B III00aJIbHY MOJIEIb IIPOTHO3Y €BOJIIO-
11 XaOTHYHOT'O aTapaKTOPy CUCTEMHU.

Ki1ro4oBi cjioBa: riipoeKoIOriuHi CUCTeMHU, HETIHIMHUN aHali3, HSHPOHHI MEPEKi, YacoBl PsAM KOHIIE-
HTpauiii, 3a0pyIHIOI0Yl PEYOBHHH, TPOTHO3YBaHHS
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