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We present firstly a new whole technique of analysis, processing and forecasting any time series of the
chemical pollutants in the typical hydroecological systems , which is schematically looked as follows: a). A
general qualitative analysis of dynamical problem of the typical hydroecological systems (including a qualita-
tive analysis from the viewpoint of ordinary differential equations, the “Arnold-analysis”); b) checking for the
presence of a chaotic (stochastic) features and regimes (the Gottwald-Melbourne’s test; the method of corre-
lation dimension); c¢) Reducing the phase space (choice of the time delay, the definition of the embedding
space by methods of correlation dimension algorithm and false nearest neighbor points); d). Determination of
the dynamic invariants of a chaotic system (Computation of the global Lyapunov dimension A,; determina-
tion of the Kaplan-York dimension d; and average limits of predictability Pr,,, on the basis of the advanced
algorithms; ) A non-linear prediction (forecasting) of an dynamical evolution of the system. The last block
indeed includes new (in a theory of hydroecological systems and environmental protection) methods and al-
gorithms of nonlinear prediction such as methods of predicted trajectories, stochastic propagators and neural
networks modelling, renorm-analysis with blocks of the polynomial approximations, wavelet-expansions etc.
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analysis and prediction methods of the theory of chaos.

1. INTRODUCTION

Problem of studying the dynamics of chaotic dynami-
cal systems arises in many areas of science and technol-
ogy. We are talking about a class of problems of identify-
ing and estimating the parameters of interaction between
the sources of complex (chaotic) oscillations of the time
series of experimentally observed values. Such problems
arise in environmental sciences, geophysics, chemistry,
biology, medicine, neuroscience, engineering, etc [1-10].
Problem of an analysis and forecasting the impact of
anthropogenic pressure on the state of atmosphere in an
industrial city and development of the consistent, ade-
quate schemes for modeling the properties of the concen-
tration fields of air pollutions has been in details consid-
ered, for example, in Ref.[3]. In modern theory of the
hydroecological systems, water resources and environ-
mental protection a problem of quantitative treating pollu-
tion dynamics is also one of the most important and fun-
damental problems, in particular, applied ecology and
urban ecology [1-18]. Let us remind [1-3] that most of the
models currently used to assess a state (as well as, the
forecast) of an environment pollution are presently by the
deterministic models or simplified ones, based on a sim-
ple statistical regressions. The success of these models,
however, is limited by their inability to describe the
nonlinear characteristics of the pollutant concentration
behaviour and lack of understanding of the involved phys-
ical and chemical processes. Especially serious problem is
arised during studying dynamics of the hydroecological
systems. Although the use of methods of a chaos theory
establishes certain fundamental limitation on the long-
term predictions, however, as has been shown in a series
of our papers (see, for example, [1-11]), these methods
can be successfully applied to a short-or medium-term
forecasting. In Ref[1-4] we presented the successful

examples of the quantitatively correct description of the
temporary changes in the concentration of nitrogen diox-
ide (NO2) and sulfur dioxide (SO2) in several industrial
cities (Odessa, Triste, Allepo and cities of the Gdansk
region) with discovery of the low-dimensional chaos.
Moreover, some eclements of this technique have been
successfully applied to several prediction tasks for other
nature system. Here we mean a prediction of the ecologi-
cal state evolution (temporal or even spatial) [6-11]. As
example, let us remind the results of the research into
dynamics of variations hydroecological (nitrates and
sulphates concentrations in the Small Carpathians river’s
watersheds in the Earthen Slovakia) systems in the defi-
nite region by using the non-linear prediction approaches
and the recurrence plots method. We at first discovered a
chaotic behaviour in the nitrates and sulphates concentra-
tion time series in the watersheds of the Small Carpathi-
ans. Naturally, except different physical and chemical
features, from the formal mathematical point of view a
difference between atmospheric and hydrological envi-
ronmental systems is not essential, because in the both
problems we are dealing with the time series of funda-
mental pollution characteristics and therefore construction
of the technique for studying pollution dynamics of hy-
droecological systems will have only some differences in
details. The main purpose of this paper is formally to
represent theoretical basis of a new general formalism for
an analysis and forecasting an impact of anthropogenic
factors on the hydroecological systems (water resources)
and develop a new compact general scheme for modeling
temporal fluctuations of the pollution concentration field
temporal fluctuations , based on the methods of a chaos
theory. Earlier it had been successfully realized in a case
of the atmosphere (air bassein) of large industrial cities
(regions). So, below we will follow the corresponding
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atmospheric formalism [2-4] and dive the necessary
comments in a case of the important features.

2. NEW GENERAL FORMALISM FOR ANALYSIS OF
AND FORECASTING POLLUTANTS DYNAMICS OF
THE HYDROECOLOGICAL SYSTEMS

As usually, we start from the first key task on testing
a chaos in the time series of hydroecological pollutants.
Following to [2-4], one should consider scalar measure-
ments of the system dynamical parameter, say:

s(n)=s(ty+ nAf) = s(n), (1)

Here ¢, is a start time, At is the time step, and # is
number of the measurements. In a general case, s(n) is
any time series (hydroecological pollutants concentra-
tion). As processes resulting in a chaotic behaviour are
fundamentally multivariate, one needs to reconstruct
phase space using as well as possible information con-
tained in s(n). Such reconstruction results in set of d-
dimensional vectors y(n) replacing scalar measurements.
The main idea is that direct use of lagged variables
s(n+t), where t is some integer to be defined, results in a
coordinate system where a structure of orbits in phase
space can be captured. Using a collection of time lags to
create a vector in d dimensions,

y(n)=[s(n),s(n + 1),s(n + 21),...5(n +(d-1)1)], 2)

the required coordinates are provided. In a nonlinear sys-
tem, s(n +jt) are some unknown nonlinear combination
of the actual physical variables. The dimension d is the
embedding dimension, dy (see details, for example, in
Refs. [2-4]).

The choice of proper time lag is important for the
subsequent reconstruction of phase space. If 7t is chosen
too small, then the coordinates s(n + jt), s(n +(j +1)t) are
so close to each other in numerical value that they cannot
be distinguished from each other. If T is too large, then
s(ntjt), s(nt+(j+1)1) are completely independent of each
other in a statistical sense. If T is too small or too large,
then the correlation dimension of attractor can be under-or
overestimated.

Further it is an important task to choose some inter-
mediate position between above cases. First approach is
to compute the linear autocorrelation function C;(8) and
to look for that time lag where C;(d) first passes through
0. This gives a good hint of choice for t at that s(n+jt)
and s(nt+(j +1)t) are linearly independent. It’s better to
use approach with a nonlinear concept of independence,
e.g. an average mutual information [1-3]. The mutual
information / of two measurements a; and by, is symmetric
and non-negative, and equals to 0 if only the systems are
independent. The average mutual information between
any value a; from system A and b, from B is the average
over all possible measurements of /,z(a;, by). Usually it is
necessary to choose that T where the first minimum of /(t)
occurs [2-4].

The goal of the embedding dimension determination is
to reconstruct a Euclidean space R’ large enough so that

the set of points d, can be unfolded without ambiguity.
The embedding dimension, dg, must be greater, or at least
equal, than a dimension of attractor, dy, i.e. dg>d,4. In
other words, we can choose a fortiori large dimension dg,
e.g. 10 or 15, since the previous analysis provides us
prospects that the dynamics of our system is probably
chaotic. The correlation integral analysis is one of the
widely used techniques to investigate the signatures of
chaos in a time series. The analysis uses the correlation
integral, C(r), to distinguish between chaotic and stochas-
tic systems.

According to [2-4], one should calculate the correla-
tion integral C(r). If the time series is characterized by an
attractor, then the correlation integral C(r) is related to the
radius » as

J - 1im 1°8C) 3)
0 logr

N—owx

where d is correlation exponent.

If the correlation exponent attains saturation with an
increase in the embedding dimension, then the system is
generally considered to exhibit chaotic dynamics. The
saturation value of correlation exponent is defined as the
correlation dimension (d;) of the attractor (see details in
refs. [3,4]).

Another method for determining dr comes from ask-
ing the basic question addressed in the embedding theo-
rem: when has one eliminated false crossing of the orbit
with itself which arose by virtue of having projected the
attractor into a too low dimensional space? [2-4]. In other
words, when points in dimension d are neighbours of one
other? By examining this question in dimension one, then
dimension two, etc. until there are no incorrect or false
neighbours remaining, one should be able to establish,
from geometrical consideration alone, a value for the
necessary embedding dimension. Such an approach was
described by Kennel et al. [16,17]. In dimension d each
vector y(k) has a nearest neighbour y""(k) with nearness
in the sense of some distance function. The Euclidean
distance in dimension d between y(k) and y""(k) we call
RAK) [3]

R (k)=[s(k)—s"™ (k)] +[s(k+1)—s" (k+1)] + @)
et [s(k+1(d =1)) = s™ (k +t(d = 1)]".

R (k) is presumably small when one has a lot a data,
and for a dataset with NV measurements, this distance is of
order 1/N"?. In dimension d+ 1 this nearest-neighbour

distance is changed due to the (d+ 1)st coordinates
s(k + dr) and s"V(k + dt) to

R, (k)= R: (k) +[s(k +dv)—s™ (k+dv)T . (5)

We can define some threshold size Ry to decide when
neighbours are false. Then if [3]

| s(k +dr)—s™ (k+dv)| S

R ©6)
R, (k)
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(the nearest neighbours at time point & are declared false).
Kennel et al. [17] showed that for values in the range
10 £ Ry <50 the number of false neighbours identified by
this criterion is constant. In practice, the percentage of
false nearest neighbours is determined for each dimension
d. A value at which the percentage is almost equal to zero
can be considered as the embedding dimension.

As usually, the predictability can be estimated by the
Kolmogorov entropy, which is proportional to a sum of
positive Lyapunov exponents. The spectrum of the
Lyapunov exponents is one of dynamical invariants for
non-linear system with chaotic behaviour. The limited
predictability of the chaos is quantified by the local and
global Lyapunov exponents, which can be determined
from measurements. The Lyapunov exponents are related
to the eigenvalues of the linearized dynamics across the
attractor. Negative values show stable behaviour while
positive values show local unstable behaviour.

For chaotic systems, being both stable and unstable,
Lyapunov exponents indicate the complexity of the dy-
namics. The largest positive value determines some aver-
age prediction limit. Since the Lyapunov exponents are
defined as asymptotic average rates, they are independent
of the initial conditions, and hence the choice of trajec-
tory, and they do comprise an invariant measure of the
attractor. An estimate of this measure is a sum of the
positive Lyapunov exponents. The estimate of the attrac-
tor dimension is provided by the conjecture d; and the
Lyapunov exponents are taken in descending order. The
dimension d; gives values close to the dimension esti-
mates discussed earlier and is preferable when estimating
high dimensions.

If one compute the whole spectrum of the Lyapunov
exponents, other invariants of the system, i.e. the Kolmo-
gorov entropy and the attractor's dimension can be found.
The Kolmogorov entropy measures the average rate at
which information about the state is lost with time. An
estimate of this measure is the sum of the positive
Lyapunov exponents. The estimate of the dimension of
the attractor is provided by the Kaplan and Yorke conjec-
ture (see details in Refs. [2-4,16,18]):

dL = .] + N s (7)
|2 |
Jj J+l
where j is such that ZKQ >0 and Z?\,a <0, and
o=l o=l

the Lyapunov exponents are taken in descending order.
The dimension d; gives values close to the dimension
estimates discussed earlier and is preferable when esti-
mating high dimensions. To compute the Lyapunov expo-
nents, one should use a method with linear fitted map,
although maps with higher order polynomials can be used
too [18-23]. Another new approach has been recently
developed by Glushkov-Prepelitsa et al and in using the
neural networks technique [25].

3. CONCLUSIONS

Summing up above said and results of Refs. [1-3], it is
useful to summarize the key points of the investigating
system for a chaos availability and wording the forecast
model (evolution) for the typical hydroecological systems
(rivers, water resources etc.). Naturally, a difference be-
tween the atmospheric and hydrological systems is not
essential and connected only with blocks of treating dy-
namics of these systems from the viewpoint of the evolu-
tionary differential equations theory.

The above methods are just part of a large set of ap-
proaches (see our versions in [1-11]), which is used in the
identification and analysis of chaotic regimes in the time
series for the typical hydroecological systems. Shortly
speaking, the whole technique of analysis, processing and
forecasting any time series of the chemical pollutants in
the typical hydroecological systems will be looked as
follows (see figure below):

A). A general qualitative analysis of dynamical prob-
lem of the typical hydroecological systems (including a
qualitative analysis from the viewpoint of ordinary differ-
ential equations, the “Arnold-analysis”);

B) checking for the presence of a chaotic (stochastic)
features and regimes (the Gottwald-Melbourne’s test; the
method of correlation dimension);

C) Reducing the phase space (choice of the time de-
lay, the definition of the embedding space by methods of
correlation dimension algorithm and false nearest
neighbor points);

D). Determination of the dynamic invariants of a cha-
otic system (Computation of the global Lyapunov dimen-
sion A; determination of the Kaplan-York dimension d;
and average limits of predictability Pr,,, on the basis of
the advanced algorithms;

E) A non-linear prediction (forecasting) of an dy-
namical evolution of the system.

The last block indeed includes new methods and algo-
rithms of nonlinear prediction such as methods of pre-
dicted trajectories, stochastic propagators and neural net-
works modelling, renorm-analysis with blocks of the
polynominal approximations, wavelet-expansions
[10,11,25]). Indeed, one should use a few algorithms at
any step of studying.

Naturally, if the aggregate and dynamic topological
invariants (see [1-11]) are identical for two chosen sys-
tems, then evolutions of these systems are also subject to
the same laws, including the same or analogous systems
of differential equations. This fact is very useful espe-
cially with using such new methods and algorithms of
nonlinear prediction as methods of predicted trajectories,
stochastic propagators and neural networks modelling
with blocks of the polynominal approximations, wavelet-
expansions [1,10,11,25].

Visn. Odes. derz. ekol. univ., 2015, Nol9

14



Analysis and forecast of the hydroecological system

I. Analytics and dynamics of
the hydroecological systems,
the “Arnold-analysis”
U
II. Preliminary studying and conclu-
sion regarding a chaos availibility

1. The Gottwald-Melbourne test
K — 1 —chaosc

U

2. Energy spectrum, statistics,
power spectra, Wigner-Dyson
distribution,...,

Y

III. The phase space geometry. The fractal
geometry

3. A method of the time lag,
algorithm by Packard-Takens,
advanced autocorrelation
function or average initial
information algorythms

4. Determining embedding di-
mension dg by the method of the
correlation dimension or algo-
rithm of the false nearest neighbor

points
Y

5. Computing multifractal spec-
tra, wavelet-analysis

U

IV. Forecasting process dynamics in hy-
droecological systems
6. Computation of the global Lyapunov
dimension A,; determination of the
Kaplan-York dimension

d; and average limits of predictabil-
ity Prp.x (advanced algorithms)

Y

7. Determining the number of nearest
neighboring points NN for the best
forecast results (analysis of qualitative
indicators),...

U

8. New methods and algorithms of
nonlinear prediction (methods of pre-
dicted trajectories, stochastic propaga-
tors and neyral networks modelling with
blocks of the polynominal approxima-
tions, wavelet-expansions ...

Fig. 1 — General compact scheme for computation of the characteristics
of the hydroecological system pollutant chaotic time series and a non-

linear analysis, modelling and prediction
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Analysis and forecast of the hydroecological system

AHAJIA3 U ITPOI'HO3 TUHAMMKHU 3AT'PASHEHUS T'HIPOSKOJIOTMYECKUX
CUCTEM, OCHOBAHHBIE HA METOJJAX TEOPUU KBAHTOBOU
IT'EOMETPUU U XAOCA: HOBAS OBIIIASA TEXHUKA

O.B. I'nymkoB, a1-p ¢.-M. H., 1pod.

Ooeccxuti 20cy0apcmeeHublil HIKON0UYeCKUll yHusepcumen,
ya. JIveosckasn, 15, 65016, Odecca, YVkpauna , glushkovav@gmail.com

MbI mpezacTaBiIsieM HOBBIN OOIIMI ammapar aHanu3a, oOpabOTKM M NPOTHO3HPOBAHUS XapaKTEPHCTHK
BPEMEHHBIX PsJIOB KOHIEHTPAIMI 3arpsi3HSIOIINX BEIIECTB JUISL THUIHMYHBIX T'HAPOIKOJIOIHYECKHX CHCTEM,
KOTOPBI CXeMaTH4YEeCKH BKJIIOYAET clenyrouiue OJOKH U YpOBHM HCCIeNOBaHMi: a). OOmmid KaueCTBEHHbIH
aHaNu3 JUHAMUYECKHX OCOOEGHHOCTEW 3aJayM 3BOIOLUM TUIHMYHBIX THUAPOIKOJIOTUUECKUX CHCTEM (B TOM
4rcie, KaYeCTBEHHBI aHAIIN3 ¢ TOYKU 3pEHUSI OOBIKHOBEHHBIX AU (epeHINANBHBIX YpaBHEHNH, " APHOIBI-
aHaim3»); 0) MpoBepka Ha HaJMYHE XAOTHUECKHX (CTOXACTUYECKHX) OCOOEHHOCTEH, DJIEMEHTOB, PEKHMOB
(tect I'oTBanbaa-MensOypHa, METOJ KOPPEISIMOHHOIN pasMepHocTH); B) MccmenoBanue ¢a3oBoro mpo-
CTpaHCTBa (BBEIOOP BPEMCHHU 3a/IE€PiKKH, ONpEJeNICHHe IIPOCTPAHCTBA BIOXKCHUS METOIAMH M alrOpUTMaMu
KOpPEISIIMOHHOW Pa3MEPHOCTH U JIOKHBIX OJIVDKAHIINX COCEHUX TOYKax); r). OnpeneneHne TMHaAMUIECKIX
WHBapUAHTOB XaOTHYECKOH CHCTEMBI (BBIYHCIICHUE ITIOOANBHON pa3sMepHOCTH, MoKa3areneid JlsmyHoBa A
onpenenenue pasmeproctu Kanmara-Mopka d, i cpefsero npejena npeackasyeMocTH Pr,, Ha OCHOBE yco-
BEPIICHCTBOBAHHBIX AJITOPUTMOB; €) HEJIMHEHHBIH aHaIN3 U Npe/cKa3aHue (IPOrHO3MPOBaHKE ) THHAMUYE-
cKkoii 3Bomoru cucteM. [locnennuil 610k AefiCTBUTENBHO BKIIIOYAeT B ce0sl HOBBIE (B TEOPUH THAPOIKOIO-
TMYECKUX CHUCTEM M OXPaHbI OKPYXKAIOIIEH CPebl) METOJBI U aITOPUTMbI HETMHEHHOTO MPOTHO3UPOBAHMUS,
TakWe KaK METOJbI MPOTHO3MPYEMBIX TPAGKTOPUH, (opMann3M CIydalHBIX MPOIAraTopoB, HEHpPOCETEBHIE
QJITOPUTMBI, PEHOPM-aHAIN3 ¢ OJIOKaMH HOJMHOMHUATBHBIX allPOKCHMANNii, BEHBIET-PA3I0OKEHIH U T. 1.

KnrodeBble cj10Ba: THAPOIKOIOTUUECKHE CUCTEMBI, SKOJIOTHYECKOE COCTOSIHUE, BPEMEHHBIE PSIbI KOH-
LEHTpaNHii, 3arpsA3HSIOMNe BEIeCTBa, aHaJIN3 U IPOTHO3MPOBAHNE HA OCHOBE METOJJOB TEOPUH Xaoca.

AHAJII3 I TIPOI'HO3 IMHAMIKMU 3ABPYJIHEHHSA I'TIPOEKOJIOI'TYHUX CUCTEM,
3ACHOBAHI HA METOJIAX KBAHTOBOJIi TEOMETPII
TA TEOPIi XAOCY: HOBA 3AT'AJIbHA TEXHIKA

O.B. I'nymikos, 1-p ¢.-M. H., Ipod.

Ooecvruli Oeparcanull ekon02iuHULl YHigepcumen,
8y Jlvgiecovka, 15, 65016 Ooeca, Yrpaina, glushkovav@gmail.com

Mu npencraBisieMo HOBHH 3arajibHUM anapar aHaiizy, 0OpoOKHU Ta IPOTrHO3yBaHHS XapaKTEPHCTHK 4aco-
BHX PSAJIB KOHIICHTpaNiif 3a0pyJHIOIOYNX PEYIOBHH JUIS THIOBHX TiIPOCKOJIOTIYHUX CHCTEM, III0 CXEMaTUIHO
BKJIIOYA€ HACTYIHI OJIOKHM 1 PiBHI TOCHTI/DKEHB: a). 3arajbHUi SKICHUI aHaji3 TUHAMIYHUX 0COOJIMBOCTEH 3a-
BJaHHS €BOJIIOLIT THUITOBUX TiIPOEKOJIOTIYHUX CHUCTeM (y TOMY YHMCII, SIKICHMH aHaji3 3 MOMIsAy 3BHYaWHHUX
nudepeHiiagbHuX piBHAHD ", ApHOJbI-aHaNi3»); 0) mepeBipka Ha HasBHICTh XAOTHYHMX (CTOXACTUYHHX)
0COOJIBOCTEH, eeMeHTIB, pexuMiB (TecT ['oTBanpaa-MenbOypHa , METOA KOpPEJLiHHOT PO3MipHOCTI); B)
Hocnimxenns ¢azoBoro npoctopy (BuOip 9acy 3aTpUMKH, BU3HAYEHHS MPOCTOPY BKIAJCHHS METOJAMH 1 ai-
TOPUTMAMH KOPEISIIHHOI PO3MIPHOCTI 1 TOMHJIKOBAX HAWOMKYMX CYCIIHIX TOYKax) ;. T) Bu3HaueHHsS am-
HaMiYHHX 1HBapiaHTIB XaOTHYHOI CHCTeMH (OOUMCIICHHS TTI00aIbHOI pO3MIPHOCTI, TOKa3HUKIB JIAmyHOBa A}
Bu3HAueHHs po3MipHocTi Kammana-Mopka d; i cepenboro Mexi nepentadyBaHOCTi Pry,, Ha OCHOBI BOCKO-
HaJICHUX aJTOPHUTMIB ;. €) HeNIHIMHMH aHami3 i IporHo3 (IPOTHO3YBAHHS) JMHAMIYHOI €BOJIOLII CHCTEM
OcranHiif 6710k AifiCHO BKIIOYaE B ceOe HOBI (B TEOPii TiAPOSKOIOTTYHNX CHCTEM Ta OXOPOHH HaBKOJHIIHBO-
TO CepeIOBHIIIa) METOIU Ta AITOPUTMH HENHIHHOTO MPOTHO3YBaHHS , TaKi sIK METOJIY IIPOTHO30BAHUX TpPae-
KTOpiH, (hopMasti3M BHUIAJKOBUX IPOIAraTop, HeHpoMepeKeBi alroputMu, PeHopMm-aHani3 3 Grokamu HoJti-
HOMiaJIbHUX alpOKCUMaIiil, BeWBIET-pO3KIALIB i T. 1.

K1104oBi cjioBa: TigpoeKoIOriuHi CHCTEMH, EKOJIOTIYHUI CTaH, YacoBl PAOM KOHLEHTpALil, 3a0pyaHio-
109l PEYOBMHH, aHAII3 Ta MPOTHO3YBaHHS Ha OCHOBI METOIB TEOpii Xxaocy.

Jama nepsoco npeocmasnenus.:05.05.2015
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Lama ony6auxosanus cmamou: 24.09.2015
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