УДК 539.184

Ю.В. Дубровская, к.ф.-м.н., асс. Одесский государственный экологический университет

НОВЫЙ ЧИСЛЕННЫЙ ПОДХОД К ВЫЧИСЛЕНИЮ ФУНКЦИИ ФЕРМИ

Предложен новый численный подход к вычислению функции Ферми в теории бета распада, базирующийся на КЭД теории возмущений с использованием калибровочно-инвариантных базисов релятивистских функций.

Ключевые слова: теория возмущений, функция Ферми, новый подход

Введение. К числу актуальных крайне важных И вычислительноматематических задач современной теории бета распада разработка неэмпирического высокоточного метода (или существенное усовершенствование существующих) численного расчета функции Ферми. Существующие методики, как правило, основываются на использовании базисов релятивистских функций типа Дирака-Фока или Дирака-Фока-Слэтера [1-10]. В более простых численных схемах применяются базисы нерелятивистских функций типа Хартри-Фока, Хартри-Фока-Слэтера [3,5]. Основными недостатками искомых схем, помимо численных погрешностей, неполный учет обмена (корреляции), нарушение фундаментального принципа калибровочной инвариантности и целый ряд других факторов. В данной работе предложен новый численный подход к вычислению функции Ферми в теории бета распада, базирующийся на КЭД теории возмущений с использованием калибровочноинвариантных базисов релятивистских функций. Релятивистские одночастичные эффекты учтены фактически в рамках оптимизированного приближения ДФ, причем в отличие от классического метода ДФ, используемый в расчетах базис релятивистских волновых функций генерируется с учетом условия калибровочной инвариантности. Для генерации искомого базиса использован фундаментальный принцип минимизации энергетического функционала, представляющего собой вклад поляризационных диаграмм 4-порядка КЭД теории возмущений [10-13], т.е. вклад диаграмм, связанный с обменом продольными фотонами в мнимую часть энергии системы. Численная реализация выполнена на основе использования метода Рунге-Кутта четвертого непрерывного итеративным порядка. Функции спектра находились путем (первоначально в приближении «замороженного» остова). Самосогласование функции непрерывного спектра считалось достигнутым, когда нормированные функции на двух соседних итерациях различались менее чем на 5 10⁻⁴ по отношению к их значениям в точке максимума функции.

Новый численный подход. Как обычно, для вычисления вероятности β -распада применим метод теории возмущений. Константа взаимодействия g характеризуется значительной малостью, что позволяет фактически в расчете ограничиваться учетом членов лишь первого порядка, соответствующих прямым переходам из начального состояния в конечное. Вероятность перехода системы из начального состояния $|\xi > c$ энергией E_{ε} в некоторое конечное состояние $< f \mid$ с энергией E_{f} в единицу времени при условии $E_0 = E_f - E_{\xi}$ определяется следующим стандартным выражением

$$dW_{\xi f} = \frac{2\pi}{\hbar} \Big| \langle f | H | \xi \rangle \Big|^2 \frac{d\tilde{N}}{dE} \Big|_{E=E_0}.$$
 (1)

Матричный элемент в формуле (1) определяется видом гамильтониана взаимодействия H_{β} и волновых функций начального ψ_{ξ} и конечного ψ_{f} состояний ядра

$$< f \mid H \mid \xi >= \int \psi_f H_\beta \psi_\xi d^3 r_1 \dots d^3 r_A \,. \tag{2}$$

Величина $\left. \frac{d\tilde{N}}{dE} \right|_{E=E_0}$ определяет плотность конечных состояний системы на единицу

энергии. Рассмотрим далее разрешенные переходы. Распределение β-частиц по энергии в этом случае имеет вид [1]:

$$dW_{\beta}(E)/dE = \frac{1}{2\pi^{3}}G^{2} \cdot F(E,Z) \cdot E \cdot p \cdot (E_{0} - E)^{2} \cdot |M|^{2}, \quad (3)$$
$$E_{0} = 1 + (E_{cp}/m_{e}c^{2}),$$
$$p = (E^{2} - 1)^{\frac{1}{2}}.$$

Здесь *G*- константа слабого взаимодействия, *E*, - полная энергия β -частицы, E_{zp} -граничная энергия β -спектра, |M| -матричный элемент, не зависящий от энергии в случае разрешенных β -переходов.

Интересующие нас функция Ферми *F* и интегральная функция Ферми *f* определяются соответственно следующим стандартным образом:

$$F(E,Z) = \frac{1}{2p^2} (g_{-1}^2 + f_{+1}^2); \qquad (4)$$

$$f(E_0, Z) = \int_{1}^{E_0} F(E, Z) \cdot E \cdot p \cdot (E_0 - E)^2 dE.$$
 (5)

Здесь f_{+1} и g_{-1} - релятивистские электронные радиальные волновые функции, которые в разных вариантах теории либо вычисляются на границе сферического ядра с радиусом R_0 (как сделано в таблицах [1]), либо используются значения этих функций в нуле (амплитуды разложения функций в ряд в нуле), как сделано в [3-5]; значки $\pm 1 = \kappa$, где $\kappa = (l-j)/(2j+1)$.В выше приведенных формулах использована следующая нормировка релятивистских радиальных функций f_{κ} и g_{κ} , при которой при больших значениях радиальной переменной:

$$g_{\iota}(r) \rightarrow r^{-1} [(E+1)/E]^{1/2} \sin(pr + \delta_{\iota}), \tag{6}$$

$$f_{\iota}(r) \rightarrow r^{-1}(\iota/|\iota|) \left[(E-1)/E \right]^{1/2} \cdot \cos\left(pr + \delta_{\iota}\right). \tag{7}$$

Вычисление искомых функций выполнено в оптимизированном приближении Дирака-Фока (ОДФ) [11]. Альтернативные подходы, развитые в работах [6,7], обладают рядом недостатков по сравнению с методом [11]. В отличие от [6,7], в ОДФ использован фундаментальный принцип минимизации энергетического функционала, представляющего собой вклад поляризационных диаграмм 4-порядка КЭД теории возмущений, т.е. вклад диаграмм, связанный с обменом продольными фотонами в мнимую часть энергии системы. В результате соответствующий базис релятивистских функций является калибровочно-инвариантными и оптимизированным. Учет обмена выполнен по стандартной дирак-фоковской методике, т.е. речь идет о полном учете обмена рассматриваемого бета частицы непрерывного спектра со всеми электронами системы. Для определения ядерного потенциала использована известная модель равномерно заряженного шара, в рамках которой искомый потенциал задается в виде [1]

$$V(r) = \begin{cases} -\frac{\alpha Z'}{R} \left[3 - \left(\frac{r}{R}\right)^2 \right], & r \le R \\ -\frac{\alpha Z}{R} U(r) - \frac{\alpha}{r}, & r > R \end{cases}$$

$$(8)$$

где α – постоянная тонкой структуры, Z и Z' = Z + 1 – заряд материнского и дочернего ядра соответственно. При $r \leq R$ принимается приближение равномерно заряженного шара, согласно которому распределение заряда ядра принято однородным по объему шара радиусом: $R = 1,202 \cdot (Z')^{1/3}$ фм.

Соответствующая система уравнений Дирака-Фока решалась численно методом Рунге-Кутта. Функции непрерывного спектра находились итеративным путем (первоначально в приближении «замороженного» остова). Самосогласование функции непрерывного спектра считалось достигнутым, когда нормированные функции на двух соседних итерациях различались менее чем на 5 10⁻⁴ по отношению к их значениям в точке максимума функции. Для разных энергий для достижения необходимой точности требовалось от 3 (при большей энергии) до 10 (при малой энергии) итераций. Вычисление нормирующего множителя проводится с помощью усреднения по периоду осцилляций функции непрерывного спектра. Если эти усредненные нормирующие множители на двух соседних периодах отличались менее, чем на 0,05%, нормирующий множитель полагался равным вычисленному значению на последнем периоде. Для достижения нормировки с требуемой точностью, уравнение ДФ интегрируется до расстояний от ядра, при которых функция непрерывного спектра проходит 5-8 периодов. Интегрирование уравнений ОДФ велось в полулогарифмической шкале, которая выбиралась так, чтобы в асимптотической области приходилось 20-25 точек на один период осцилляции функции. Вблизи ядра шкала была близка к обычной логарифмической шкале. В дальнейшем при вычислении интегралов в них (как это принято при вычислении интегралов от сильно осциллирующих функций) вводился фактор затухания exp(-уr). Значения у выбирались таким образом, чтобы была обеспечена требуемая точность (~0,01%).

Результаты расчета и выводы. Приведем далее результаты численного расчета значений функции Ферми F(E,Z) при выборе разных определений для искомой величины. Первый вариант – расчет функции Ферми F(E,Z) на границе ядра. Второй вариант – расчет функции Ферми F(E,Z) вблизи нуля. В первом случае вычисление функция Ферми F(E,Z) проводилось с помощью значений радиальных электронных волновых функций $f_{+1}^2(R_0) + g_{-1}^2(R_0)$ - на границе ядра (равномерно заряженного сферического ядра) [1], во втором – функция Ферми вычислялась с помощью квадратов

амплитуд разложения: $N_{\kappa=+1}^2 + N_{\kappa=-1}^2$, радиальных электронных волновых функций $f_{+1}^2(0) + g_{-1}^2(0)$ при $r \to 0$. Обычным параметром, характеризующим значений функции Ферми F(E,Z) при выборе разных определений для искомой величины, является параметр

$$\Delta_3 = \{ [F(E, Z, R=0) / F(E, Z, R=R_0)] - 1 \}^{-1} 100\%,$$

где F (E, Z, $R=R_0$) – значение функции Ферми, вычисленное со значениями радиальных электронных волновых функций на границе ядра; F (E, Z, R=0) - значение функции Ферми, вычисленное с помощью амплитуд разложения волновых радиальных функций вблизи нуля. Результаты расчета отличий значений функции Ферми F(E,Z) при выборе двух разных определений этой величины приведены в табл. 1. Приведены результаты нашего расчета в рамках метода ОДФ, а также для сравнения для ряда значений кинетической энергии данные оценок в рамках релятивистского метода Хартри-Фока-Слэтера (ХФС) [1,3-5].

Таблица 1 - Различие функции Ферми *F* (*E*, *Z*) для β распада при выборе разных определений для этой величины: $\Delta_3 = \{ [F(E, Z, R=0)) / F(E, Z, R=R_0] - 1 \}^{-1} 100\% : X\PhiC - данные работы [1,3-5], ОДФ – данные нашего расчета$

<i>Е_{кин}</i> , кэВ	Δ_3 , %				
	Z=20	Z=44	Z=63	Z=80	Z=95
	ХФС ОДФ				ХФС ОДФ
0,1	1,35 1,39	5,44	12,72	23,25	33,9 36,8
1,0	1,37 1,42	5,53	12,84	23,36	34,1 37,2
50	1,38 1,45	5,58	12,95	23,58	34,2 37,6
500	1,50 1,58	5,84	13,10	24,61	35,5 39,88

Примечание: F (E, Z, $R=R_0$) вычислено со значениями радиальных электронных волновых функций на границе ядра, а F (E,Z, R=0) – с помощью амплитуд разложения волновых радиальных функций вблизи нуля

Анализ результатов показывает, что с ростом атомного номера Z различие в значениях функции Ферми, определенной по разным методикам, резко возрастает.

Отметим, что в литературе приводились различные точки зрения на корректность и приемлемость того или иного подхода к определению функции Ферми. По нашему мнению (см. также [3-5]), определение функции Ферми с помощью амплитуд разложения волновых функций около нуля является более оправданным и рациональным, чем альтернативное определение на границе ядра.

В целом анализ конечных результатов для вероятностей бета распада, вычисленных с помощью оптимизированного метода Дирака-Фока и метода Хартри-Фока-Слэтера, и сравнение с эмпирическими данными показывает, что наша схема значительно более точно и адекватно описывает и функцию Ферми и соответственно вероятности распадов.

В заключение автор выражает глубокую благодарность проф. Глушкову А.В. за полезные советы и критические замечания.

Список литературы

- 1. Джелепов Б.С., Зырянова Л.П., Суслов Ю.П. Бета-процессы. Функции для анализа бета-спектров и электронного захвата.– Л.: Наука, 1978. 473С.
- 2. *Clementi E., Roetti C.* Roothaan-Hartree-Fock atomic wavefunctions. Basis functions and their coefficients for ground and certain excited states of neutral ionized atoms, Z<54//Atom. Data Nucl. Data Tabl.-1974- Vol.14, N3-4 P.177-478.
- 3. Behrens H., Janske J. Landolt-Berstein. New series. Gr.1.V.4.: N-Y, Spriner-1969.
- 4. Karpeshin F, Trzhaskovskaya M., Gangrskii Y.P., Resonance Internal Conversion in heavy Ions //JETP.-2004.-Vol.99.-P.286-289.
- 5. *Harston M.R., Pyper N.C.* On estimates of probabilities for beta Decay of a Nucleus with capture on electron shells//Phys.Rev.Lett.-1986.-Vol.56.-P.1790-1795.
- 6. *Aerts P.J.C., Nieuwpoort W.C.* On the use of gaussian basis sets to solve the Hartree-Fock-Dirac equation. I. Application to one electron atomic systems// Chem. Phys. Lett.-1985.-Vol.113, N2.-P.165-172.
- 7. *Dietz K., Hess B.A.* Single particle orbitals for configuration interaction derived from quantum electrodynamics// Phys.Scripta.-1989.-Vol.39.-P.682-688.
- 8. *Glushkov A.V., Malinovskaya S.V.* Co-operative laser nuclear processes: border lines effects// In: New projects and new lines of research in nuclear physics. Eds. G.Fazio and F.Hanappe, Singapore : World Scientific.-2003.-P.242-280.
- 9. *Glushkov A.V.* Energy Approach to Resonance states of compound super-heavy nucleus and EPPP in heavy nucleus collisions// Low Energy Antiproton Phys.-2005.-Vol.796.-P.206-210.
- 10. Глушков А.В. Релятивистские и корреляционные эффекты в спектрах атомных систем.- Одесса: Астропринт, 2006.- 400С.
- 11. *Glushkov A.V., Ivanov L.N.* Radiation decay of atomic states: atomic residue and gauge noninvariant contributions//Phys.Lett.A.-1992.-V.170,N3.-P.33-37.
- 12. *Glushkov A.V., Khetselius O.Yu., Gurnitskaya E.P., Loboda A.V., Florko T.A., Lovett L.* Gauge-invariant QED perturbation theory approach to calculating nuclear electric quadrupole moments, hyperfine structure constants for heavy atoms and ions// Frontiers in Quantum Systems in Chemistry and Physics (Springer).-2008.-Vol.18.- P.505-552.
- 13. *Glushkov A.V., Khetselius O.Yu., Malinovskaya S., Dubrovskaya Yu.V., Vitavetskaya L.A.* Quantum calculation of cooperative muon-nuclear processes // Recent Advances in Theory of Phys. and Chem. Systems (Springer).-2006.-Vol.15.-P.301-328.

Новий чисельний підхід до розрахунку функції Фермі. Дубровська Ю.В.

Розвинуто новий чисельний підхід до розрахунку функції Фермі в теорії бета розпаду, який базується на КЕД теорії збурень з використанням калібровочно-інваріантних базисів релятивістських функцій. **Ключові слова:** теорія збурень, функція Фермі, новий підхід

New numerical approach to calculation of the Fermi function. Dubrovskaya Yu.V.

It is proposed a new approach to calculating the Fermi function in beta decay theory, which bases on the QED perturbation theory with using gauge-invariant basises of relativistic functions. **Keywords**: perturbation theory, Fermi function, new approach.