Ю.Г.Чернякова, к.ф.-м.н.

Одесский государственный экологический университет

САТЕЛЛИТНАЯ СТРУКТУРА СПЕКТРОВ МНОГОЗАРЯДНЫХ ИОНОВ В РАМКАХ РЕЛЯТИВИСТСКОЙ ТЕОРИИ ВОЗМУЩЕНИЙ: Ar VIII

Работа посвящена изучению сателлитной структуры Ne-подобных линий. На основе нового метода релятивистской теории возмущений с модельным нулевым приближением для трехквазичастичных систем выполнен теоретический расчет Na-подобных сателлитных линий в спектре Ne —подобного иона Ar VIII.

Ключевые слова: релятивистская теория возмущений, саттелитные спектры

Введение. Необходимость создания новых приборов электроники, поиска новых активных сред для лазеров коротковолнового диапазона, развития новых оптимальных методик спектроскопической диагностики плазмы многозарядных ионов как примесей в термоядерных реакторах и т.д. по прежнему стимулируют значительный интерес к теоретическому изучению спектров многозарядных ионов [1]. Проблема адекватного анализа экспериментальных данных и интерпретации особенностей излучения ионов плазмы, напр., в токамаках, мало индуктивной вакуумной искре и т.д., остается по-прежнему еще далекой от своего полного разрешения. В последние годы значительный прогресс наблюдается в теоретическом моделировании диэлектронных спектров многозарядных ионов и связан он с развитием новых математических методов моделирования спектров, в частности, в рамках аппарата релятивистской теории возмущений (РТВ) [2-10]. Данная работа продолжает наши исследования сателлитной структуры Ne-подобных линий. На основе нового метода РТВ с модельным нулевым приближением для трехквазичастичных систем выполнен расчет спектроскопических характеристик Na-подобных сателлитных линий в спектре Ne-подобного иона аргона.

Метод ab initio релятивистской теории возмущений. Остановимся кратко на ключевых аспектах метода. Детальное изложение дано, например, в работах [6-10]. Полный гамильтониан уравнения Дирака для N -электронной системы имеет вид

$$H = \sum_{i}^{N} h(r_i) + \sum_{i>j}^{N} V(r_i r_j),$$

где h(r) – гамильтониан Дирака для электрона в кулоновом поле ядра -Z/r; $V(r_ir_j)$ – оператор, описывающий межэлектронное взаимодействие. В качестве гамильтониана нулевого приближения берется

$$H_0 = \sum_{i}^{N} h(r_i) + \sum_{i}^{N} V_c(r_i|b(z)),$$

где $V_c(r_i|b(z))$ -центральный потенциал, имитирующий эффективный потенциал остовных электронов. Для его построения используется изложенная в [5-7] неэмпирическая КЭД процедура, исходящая из принципа минимизации калибровочно неинвариантного вклада ТВ в радиационную ширину энергетического уровня атома. Это один из моментов, отличающих нашу версию РТВ от методов типа [1-4]. Рассмотрим уровни конфигурации $1s^22s^22p^53l_13l_2$ (Na-подобный ион). Указанную конфигурацию в нулевом и первом порядке ТВ можно считать трехквазичастичной (3q). Энергия состояния представима в виде ряда ТВ [6]

$$E(n_1l_1j_1n_2l_2j_2n_3^{-1}l_3^{-1}j_3^{-1}) = E^0 + \Delta E_1 + \Delta E_2 + \dots$$

где E^0 определяется в нулевом приближении ТВ (численное решение уравнения Дирака для внешнего электрона над остовом заполненных оболочек в случае Na-подобных ионов). При расчете матрицы энергии наиболее трудоемкой задачей является вычисление угловых частей матричных элементов, которые возникают при интегрировании по угловым и суммировании по спиновым переменным. Матричные элементы оператора ТВ строятся на волновых функциях 3д состояний и выражаются через матричные элементы, рассчитанные между 2д состояниями, причем эти выражения различны в зависимости от того, отличаются или нет квантовые числа в каждой из обкладок (см.[2-4]). Рассматриваются три типа 3q обкладок: однороднооднородная, однородно-неоднородная и неоднородно-неоднородная конфигурации. В каждом случае выражение для матричного элемента разбивается на два слагаемых: первое слагаемое содержит взаимодействие электрон-электрон, второе- электронвакансия. В приведенных ниже формулах у означает тройку квантовых чисел hlj, степень (-1) относится к вакансии, черта над буквой обознакает квантовые числа конечного состояния. Для матричного элемента однородно-однородной конфигурации $\langle \gamma_1^2(J_{12})\gamma_3^{-1}J|M|\bar{\gamma}_1^2(\bar{J}_{12})\bar{\gamma}_3^{-1}J\rangle$ имеем

- а) электрон-электронная часть: $\langle \gamma_1^2(J_{12}) | M | \bar{\gamma}_1^2(J_{12}) \rangle \delta(\gamma_3, \bar{\gamma}_3) \delta(J_{12}, \bar{J}_{12})$.
- б) электрон-вакансионная часть

$$2\sum_{J_{12}} \left\langle \gamma_1 \gamma_3^{-1}(J_{12}) | M | \gamma_1 \overline{\gamma}_3^{-1}(J_{12}) \right\rangle \delta(\gamma_1 \overline{\gamma}_1) (-1)^{J_{12} + \overline{J}_{12} + j_3 + \overline{j}_3 + j_1 + \overline{j}_1} \cdot \begin{cases} J_{12} & j_3 & J \\ J_{13} & j_1 & j_1 \end{cases} \begin{pmatrix} \overline{J}_{12} & \overline{j}_3 & J \\ J_{13} & \overline{j}_1 & \overline{j}_1 \end{pmatrix}$$

Матричный элемент типа $\left\langle \gamma_1^2 (J_{12}) \gamma_3^{-1} J \middle| M \middle| \overline{\gamma}_1 \overline{\gamma}_2 (\overline{J}_{12}) \overline{\gamma}_3^{-1} J \right\rangle$ однородно-неоднородной электронной конфигурации содержит два слагаемых:

- а) электрон электронная часть: $\left\langle \gamma_1^2 \left(J_{12} \right) \! \middle| M \middle| \bar{\gamma}_1 \bar{\gamma}_2 \left(\bar{J}_{12} \right) \right\rangle \! \delta \left(\gamma_3, \bar{\gamma}_3 \right) \! \delta \left(J_{12}, \bar{J}_{12} \right) \! \delta \left(\pi_1 \pi_2 \right), \, \pi_{\rm I} = (-1)^2.$
- б) электрон-вакансионная часть

$$\delta(\pi_{13}, \overline{\pi}_{13}) \sum_{J_{13}} \left\langle \gamma_1 \gamma_3^{-1}(J_{13}) \middle| M \middle| \overline{\gamma}_1 \overline{\gamma}_3^{-1}(J_{13}) \middle| \delta(\gamma_1 \overline{\gamma}_2)(-1)^{J_{12} + \overline{J}_{12} + j_3 + \overline{j}_3 + j_1 + \overline{j}_2} \right. \cdot \begin{cases} J_{12} & j_3 & J \\ J_{13} & j_1 & j_1 \end{cases} \left(\overline{J}_{12} & \overline{j}_3 & J \\ J_{13} & \overline{j}_1 & \overline{j}_2 \right) + C_{13} \left(\overline{\gamma}_1 \gamma_3 \right) \left(\overline{\gamma}_1 \gamma_1 \gamma_3 \right) \left(\overline{\gamma}_1 \gamma_3$$

$$\begin{split} \delta(\pi_{13}, \overline{\pi}_{23}) & \sum_{J_{13}} \left\langle \gamma_{1} \gamma_{3}^{-1} \left(J_{13}\right) \! \middle| M \middle| \overline{\gamma}_{1} \overline{\gamma}_{3}^{-1} \left(J_{13}\right) \right\rangle \delta(\gamma_{1} \overline{\gamma}_{1}) (-1)^{J_{12} + j_{3} + \overline{j}_{3} + j_{1} + j_{2}} \cdot \begin{cases} J_{12} & j_{3} & J \\ J_{13} & j_{1} & j_{1} \end{cases} \left(\overline{J}_{12} & \overline{j}_{3} & J \\ J_{13} & \overline{j}_{2} & \overline{j}_{1} \end{cases} \right) \cdot (J_{13}) \sqrt{2(J_{12})(\overline{J}_{12})} \end{split}$$
 где

 $\pi_{ij} = (-1)^{\ell_i + \ell_j}$. Для неоднородно-неоднородной электронной конфигурации $\left\langle \gamma_1 \gamma_2 (J_{12}) \gamma_3^{-1} \ J \middle| M \middle| \bar{\gamma}_1 \bar{\gamma}_2 \left(\bar{J}_{12} \right) \bar{\gamma}_3^{-1} J \right\rangle$ можно записать:

- а) электрон-электронная часть: $\left\langle \gamma_{1}\,\gamma_{2}(J_{12})\!\!\middle|\!\!\!/M\big|\bar{\gamma}_{1}\bar{\gamma}_{2}(J_{12})\!\!\middle|\!\!\!/\delta(\gamma_{3},\bar{\gamma}_{3})\!\!\!/\delta(J_{12},\bar{J}_{12})\right\rangle$
- б) электрон-вакансионная часть

$$\sum_{J_{13}} \left\langle \gamma_1 \gamma_3^{-1} (J_{13}) | M | \bar{\gamma}_1 \bar{\gamma}_3^{-1} (J_{13}) \right\rangle \delta(\gamma_2 \bar{\gamma}_2) (-1)^{J_{12} + \bar{J}_{12} + j_3 + \bar{j}_3 + 1} \cdot \begin{cases} J_{12} & j_3 & J \\ J_{13} & j_2 & j_1 \end{cases} \begin{pmatrix} \bar{J}_{12} & \bar{j}_3 & J \\ J_{13} & \bar{j}_2 & \bar{j}_1 \end{pmatrix} \cdot (J_{13}) \sqrt{(J_{12})(\bar{J}_{12})} +$$

$$\sum_{J_{13}} \left\langle \gamma_2 \gamma_3^{-1} (J_{13}) | M | \bar{\gamma}_2 \bar{\gamma}_3^{-1} (J_{13}) \right\rangle \delta(\gamma_1 \bar{\gamma}_1) (-1)^{j_2 + j_3 + \bar{j}_2 + \bar{j}_3} \cdot \begin{cases} J_{12} & j_3 & J \\ J_{13} & j_1 & j_2 \end{cases} \begin{pmatrix} \bar{J}_{12} & \bar{j}_3 & J \\ J_{13} & \bar{j}_1 & \bar{j}_2 \end{pmatrix} \cdot \begin{pmatrix} J_{13} & J$$

$$\sum_{J_{13}} \left\langle \gamma_1 \gamma_3^{-1} (J_{13}) | M | \bar{\gamma}_2 \bar{\gamma}_3^{-1} (J_{13}) \right\rangle \delta(\gamma_2 \bar{\gamma}_1) (-1)^{J_{12} + \bar{J}_{12} + \bar{J}_3 + \bar{J}_2 + j_2} \cdot \begin{cases} J_{12} & j_3 & J \\ J_{13} & j_2 & j_1 \end{cases} \begin{pmatrix} \bar{J}_{12} & \bar{j}_3 & J \\ J_{13} & \bar{j}_1 & \bar{j}_2 \end{pmatrix} \cdot (J_{13}) \sqrt{(J_{12})(\bar{J}_{12})} +$$

$$\sum_{J_{13}} \left\langle \gamma_1 \gamma_3^{-1} (J_{13}) \middle| M \middle| \bar{\gamma}_1 \bar{\gamma}_3^{-1} (J_{13}) \right\rangle \delta(\gamma_1 \bar{\gamma}_2) (-1)^{\bar{J}_{12} + j_3 + \bar{j}_3 + j_2 + \bar{j}_2} \cdot \begin{cases} J_{12} & j_3 & J \\ J_{13} & j_1 & j_2 \end{cases} \left\{ \begin{matrix} \bar{J}_{12} & \bar{j}_3 & J \\ J_{13} & \bar{j}_2 & \bar{j}_1 \end{matrix} \right\} \cdot (J_{13}) \sqrt{(J_{12})(\bar{J}_{12})}.$$

Процедура учета поправок второго и высших порядков РТВ (взаимодействие частиц через поляризуемый остов и взаимная экранировка квазичастиц) описаны в [2,3].

Результаты расчета и выводы. Разработанный нами неэмпирический метод РТВ был применен в расчетах спектра собственных значений энергии гамильтониана Na-подобных сателлитных линий в спектрах Ne —подобных ионов, в частности, иона аргона. Этот ион представляет огромный интерес с точки зрения диагностики плазмы в современных термоядерных реакторах, астрофизической плазмы и т.д. В табл. 1 приведены значения энергий уровней конфигурации $2p^53s3p$, $2p^53p^2$ в ионе Ar VIII (в 10^3 см⁻¹; J=3/2): а — метод Хартри-Фока (ХФ); b- метод РТВ с эмпирическим «0» приближением; с- наш расчет; е- эксперимент (полный угловой момент: J=3/2).

Таблица 1 - Энергии уровней конфигурации $2p^53s3p$, $2p^53p^2$ для ArVIII (в 10^3 см⁻¹; J=3/2): а — метод $X\Phi$; b- метод PTB с эмпирическим «0» приближением; с- наш расчет (с учетом высших порядков TB); d- эксперимент [1,5,7]

Конфигурация уровня	a	b	c	D
0.54(p'sp'2)0.50(p'sp1)0.42(p'sp0)	2079	2076	2059	2060
0.80(p'sp0)0.39(psp1)	2098	2094	2079	2080
0.61(p'sp'2)0.60(p'sp1)0.39(p'sp'1)	2119	2105	2089	2091
0.65(psp'1)0.47(psp1)0.41(p'sp0)	2127	2114	2099	2100
0.56(psp'2)0.54(psp1)0.49(p'sp'2)	2129	2120	2105	2106
0.77(p'sp'1)0.54(p'sp1)	2184	2171	2164	2165
0.79(p'sp'1)0.52(psp1)0.26(p'sp'1)	2196	2184	2175	2178
0.98(p'ss0)	1995	1980	1980	1980
0.60(p'pp0)0.53(p'pp'1)0.37(p'p'p'0)	2256	2244	2240	
0.65(p'pp'1)0.46(p'pp0)0.39(pp'p'2)	2272	2257	2255	
0.78(p'pp'2)0.38(p'p'p'0)	2273	2258	2257	
0.81(ppp'1)0.35(ppp'2)0.32(p'pp'1)	2284	2271	2268	
0.61(pp'p'2)0.48(p'p'p'2)0.38(p'p'p2)	2291	2277	2274	
0.54(pp'p'2)0.52(p'pp'2)0.48(p'p'p'2)	2309	2295	2291	
0.73(p'p'p'0)0.53(p'pp0)0.28(ppp'2)	2331	2319	2316	
0.64(p'p'p'2)0.53(ppp'2)0.40(ppp'1)	2362	2356	2356	

Вследствие сильного перемешивания состояний в промежуточной схеме связи определенные конфигурации мы не указываем, а пишем лишь конфигурации, дающие наибольший вклад. Для краткости введены обозначения: буква, стоящая в первой позиции, относится к состоянию вакансии, а последующие две буквы - к состояниям надостовных электронов. Число, следующее за ними, указывает промежуточный угловой момент связывания 2-е состояния, штрихом отмечены состояния, в которых частица имеет наибольший возможный для данного l полный угловой момент. Например, обозначение (p sp0) эквивалентно обозначению: $2p^5_{3/2}(3s_{1/2}3p_{1/2}[0])$.Наши теоретические данные (колонка с) [10] сравниваются с данными расчета в рамках РТВ с эмпирическим модельным нулевым приближением Иванова-Ивановой-Глушкова [2-4] и данными эксперимента (колонка d). Отметим хорошее согласие наших данных с экспериментом, что свидетельствует о высокой эффективности подхода. В заключение автор выражает глубокую благодарность проф. Глушкову А.В. за постановку задачи, полезные советы и ценные критические замечания.

Список литературы

- 1. *Сафронова У.И., Аглицкий Е.В.*, Спектроскопия автоионизационных состояний.- М.: Атомиздат, 2002.-350С.
- 2. *Glushkov A.V.,Ivanova E.P.*, Theoretical investigation of spectra of multicharged ions of F-,Ne-like isoelectronic sequences// J.Quant. Spectr. Rad.Trans.-1986.-Vol.36.-P.127-145.
- 3. *Глушков А.В., Иванова Е.П.*, Расчет спектров Ne- и F-подобных ионов методом релятивистской теории возмущений// В кн.: Спектроскопия многозарядных ионов. Под ред. Сафроновой У.И.- М.:Наука.-1986.-С.5-195.
- 4. *Иванова Е.П., Гогава А.*, Спектры Ne-подобных ионов в рамках теории возмущений с эмпирическим нулевым приближением// В кн: Спектроскопия автоионизационных состояний атомов. Под ред. У.И.Сафроновой.-М.: Наука, 1988.-С.71-88.
- 5. *Glushkov A.V., Ivanov L.N.* Radiation decay of atomic states: atomic residue and gauge noninvariant contributions//Phys.Lett.A.-1992.-V.170,N3.-P.33-37.
- 6. Glushkov A.V., Ambrosov S.V., Khetselius O.Yu., Loboda A.V., Chernyakova Yu.G., , Svinarenko A.V. QED calculation of superheavy elements ions: energy levels, radiative corrections and hfs for different nuclear models// Nucl. Phys.A.-2004.-Vol. 736.-p.21-24.
- 7. Glushkov A.V., Malinovskaya S.V., Chernyakova Yu.G., Svinarenko A.A. Cooperative Laser-Electron-Nuclear Processes: QED Calculation of Electron Satellites Spectra for Multi-Charged Ion in Laser Field// Int. Journ. Quant. Chem. -2004. -Vol. 99, N5. -P. 889-893.
- 8. *Chernyakova Yu.G.*, The K plasma emission spectra in a low inductive vacuum spark: relativistic calculation of transition probabilities// Photoel.-2007.- Vol.16.-P.93-98.
- 9. *Чернякова Ю.Г.*, Сателлитная структура спектров ионов в рамках релятивистской теории возмущений// Вестник Одесск.гос.эклолог.ун-та.-2006.-№2.-С. 241-245.
- 10. *Chernyakova Yu.G.*, Quantization of states of particles in: relativistic perturbation theory for Dirac equation// Proc. Intern. Conf. on Geometry.-Odessa, Ukraine.-2006.-P.81-82.

Сателітна структура спектрів багатозарядних іонів в межах релятивістської теорії збурень: Ar VIII Чернякова Ю.Г.

Робота присвячена вивченню сателітної структури Ne-подібних ліній. На основі нового методу релятивістської теорії збурень з модельним нульовим наближенням для трьохквазічастинкових систем виконано чисельний розрахунок Na-подібних сателітних ліній в спектрі Ne —подібного іону Ar VIII. Ключові слова: релятивістська теорія збурень, сателітні спектри, аргон.

The satellite structure of multicharged ions spectra within relativistic perturbation theory: Ar VIII Yu.Chernyakova

The paper is devoted to studying of satellite structure of He- and Ne-like lines. Within new method – relativistic perturbation theory with ab initio model zeroth approximation for three-quasi-particle systems the calculation of spectroscopic characteristics for Na-like satellite lines in spectra of Ne –like ion wa Ar VIII is carried out. **Keywords:** relativistic perturbation theory, satellite spectra, argon.