Ю.Г.Чернякова, к.ф.-м.н.

Одесский государственный экологический университет

САТЕЛЛИТНАЯ СТРУКТУРА СПЕКТРОВ МНОГОЗАРЯДНЫХ ИОНОВ В РАМКАХ РЕЛЯТИВИСТСКОЙ ТЕОРИИ ВОЗМУЩЕНИЙ

Работа посвящена теоретическому изучению сателлитной структуры Neподобных линий. На основе нового метода релятивистской теории возмущений с модельным нулевым приближением для трехквазичастичных систем [8–10] выполнен теоретический расчет Na-подобных сателлитных линий в спектрах Ne—подобных ионов.

Ключевые слова: релятивистская теория возмущений, сателлитные спектры

Введение. Необходимость создания новых приборов квантовой электроники, поиска новых активных срел ДЛЯ лазеров коротковолнового диапазона. усовершенствования существующих и развития новых оптимальных методик спектроскопической диагностики плазмы многозарядных ионов как примесей в термоядерных реакторах и т.д. по прежнему стимулируют значительный интерес к теоретическому изучению характеристик плазмы многозарядных ионов в мало индуктивной вакуумной искре [1]. Проблема адекватного анализа экспериментальных данных и теоретической интерпретации особенностей излучения плазмы в мало индуктивной вакуумной остается по-прежнему еще далекой от своего полного разрешения. В последние годы значительный прогресс наблюдается в теоретическом моделировании диэлектронных спектров многозарядных ионов и связан он с развитием новых математических методов моделирования спектров, в частности, в рамках аппарата релятивистской теории возмущений [2-6]. Данная работа посвящена теоретическому изучению сателлитной структуры Не-подобных и Ne-подобных линий. На основе нового метода релятивистской теории возмущений с модельным нулевым приближением для трехквазичастичных систем [5,6] выполнен теоретический расчет спектроскопических характеристик Na-подобных сателлитных линий в спектрах Ne-подобных ионов.

Метод ab initio релятивистской теории возмущений. Полный гамильтониан уравнения Дирака для N -электронной системы имеет вид:

$$H = \sum_{i}^{N} h(r_i) + \sum_{i>j}^{N} V(r_i r_j)$$

где h(r) — одноэлектронный гамильтониан Дирака для электрона, движущегося в кулоновом поле ядра -z/r, $V(r_i r_j)$ — оператор, описывающий межэлектронное взаимодействие. В качестве гамильтониана нулевого приближения берется:

$$H_0 = \sum_{i}^{N} h(r_i) + \sum_{i}^{N} V_c(r_i|b(z))$$

где $V_c(r_i|b(z))$ -центральный потенциал, имитирующий эффективный потенциал остовных электронов. Для его построения используется изложенная в [5, 6] неэмпирическая квантово-электродинамическая процедура, исходящая из критерия минимизации калибровочно неинвариантного вклада в радиационную ширину энергетического уровня атома. Это один из ключевых моментов, отличающих нашу версию релятивистской теории возмущений от методов типа [1-4]. Рассмотрим уровни

конфигурации $1s^2 2s^2 2p^5 3l_1 3l_2$ (Na-подобный ион). Указанную конфигурацию в нулевом и первом порядке теории возмущений можно считать трехквазичастичной. Энергия состояния представима в виде ряда теории возмущений [5]:

$$E(n_1l_1j_1n_2l_2j_2n_3^{-1}l_3^{-1}j_3^{-1}) = E^0 + \Delta E_1 + \Delta E_2 + \dots$$

где E^0 определяется в нулевом приближении теории возмущений (численное решение уравнения Дирака для внешнего электрона над остовом заполненных электронных оболочек в случае Na, Ne-подобных ионов). При расчете матрицы энергии наиболее трудоемкой задачей является вычисление угловых частей матричных элементов, которые возникают при интегрировании по угловым и суммировании по спиновым переменным. Матричные элементы оператора возмущения строятся на волновых функциях трехчастичных состояний и выражаются через матричные элементы, рассчитанные между двухчастичными состояниями, причем эти выражения различны в зависимости от того, отличаются или нет квантовые числа в каждой из обкладок (см.[3,4]). Рассматриваются три возможных типа трехчастичных обкладок: однороднооднородная, однородно-неоднородная и неоднородно-неоднородная электронные конфигурации. В каждом случае выражение для матричного элемента разбивается на два слагаемых: первое слагаемое содержит взаимодействие электрон-электрон, второеэлектрон-вакансия. В приведенных ниже формулах у означает тройку квантовых чисел hlj, степень (-1) относится к вакансии, черта над буквой обознакает квантовые числа конечного состояния. Для матричного элемента однородно-однородной конфигурации $\left\langle \gamma_1^2 (J_{12}) \gamma_3^{-1} J | M | ar{\gamma}_1^2 (ar{J}_{12}) ar{\gamma}_3^{-1} J
ight
angle$ имеем

- а) электрон-электронная часть: $\langle \gamma_1^2(J_{12}) \! | M | \bar{\gamma}_1^2(J_{12}) \rangle \delta(\gamma_3, \bar{\gamma}_3) \delta(J_{12}, \bar{J}_{12})$
- б) электрон-вакансионная часть

$$2\sum_{J_{12}} \left\langle \gamma_1 \gamma_3^{-1}(J_{12}) | M | \gamma_1 \overline{\gamma}_3^{-1}(J_{12}) \right\rangle \delta(\gamma_1 \overline{\gamma}_1) (-1)^{J_{12} + \overline{J}_{12} + j_3 + \overline{j}_3 + j_1 + \overline{j}_1} \cdot \begin{cases} J_{12} & j_3 & J \\ J_{13} & j_1 & j_1 \end{cases} \begin{pmatrix} \overline{J}_{12} & \overline{j}_3 & J \\ J_{13} & \overline{j}_1 & \overline{j}_1 \end{pmatrix}$$

Матричный элемент типа $\langle \gamma_1^2(J_{12})\gamma_3^{-1}J|M|\bar{\gamma}_1\bar{\gamma}_2(\bar{J}_{12})\bar{\gamma}_3^{-1}J\rangle$ однородно-неоднородной электронной конфигурации содержит два слагаемых:

- а) электрон электронная часть: $\langle \gamma_1^2(J_{12}) | M | \bar{\gamma}_1 \bar{\gamma}_2(\bar{J}_{12}) \rangle \delta(\gamma_3, \bar{\gamma}_3) \delta(J_{12}, \bar{J}_{12}) \delta(\pi_1 \pi_2)$, где $\pi_1 = (-1)^2$
- б) электрон-вакансионная часть

$$\delta(\pi_{13}, \overline{\pi}_{13}) \sum_{J_{13}} \left\langle \gamma_{1} \gamma_{3}^{-1}(J_{13}) | M | \overline{\gamma}_{1} \overline{\gamma}_{3}^{-1}(J_{13}) \right\rangle \delta(\gamma_{1} \overline{\gamma}_{2}) (-1)^{J_{12} + \overline{J}_{12} + j_{3} + \overline{j}_{3} + j_{1} + \overline{j}_{2}} \cdot \begin{cases} J_{12} & j_{3} & J \\ J_{13} & j_{1} & j_{1} \end{cases} \begin{pmatrix} \overline{J}_{12} & \overline{j}_{3} & J \\ J_{13} & \overline{j}_{1} & \overline{j}_{2} \end{pmatrix} + C_{13} + C_{1$$

$$\delta(\pi_{13}, \overline{\pi}_{23}) \sum_{J_{13}} \langle \gamma_1 \gamma_3^{-1}(J_{13}) | M | \overline{\gamma}_1 \overline{\gamma}_3^{-1}(J_{13}) \rangle \delta(\gamma_1 \overline{\gamma}_1) (-1)^{J_{12} + j_3 + \overline{j}_3 + j_1 + j_2} \cdot \begin{cases} J_{12} & j_3 & J \\ J_{13} & j_1 & j_1 \end{cases} \begin{pmatrix} \overline{J}_{12} & \overline{j}_3 & J \\ J_{13} & \overline{j}_2 & \overline{j}_1 \end{cases} \cdot (J_{13}) \sqrt{2(J_{12})(\overline{J}_{12})}$$

где $\pi_{ij} = (-1)^{\ell_i + \ell_j}$. Для неоднородно-неоднородной электронной конфигурации $\left\langle \gamma_1 \gamma_2 (J_{12}) \gamma_3^{-1} \quad J \middle| M \middle| \bar{\gamma}_1 \bar{\gamma}_2 (\bar{J}_{12}) \bar{\gamma}_3^{-1} J \right\rangle$ можно записать:

а) электрон-электронная часть: $\langle \gamma_1 \gamma_2(J_{12}) | M | \bar{\gamma}_1 \bar{\gamma}_2(J_{12}) \rangle \delta(\gamma_3, \bar{\gamma}_3) \delta(J_{12}, \bar{J}_{12})$

б) электрон-вакансионная часть

$$\sum_{J_{13}} \left\langle \gamma_1 \gamma_3^{-1} (J_{13}) \middle| M \middle| \bar{\gamma}_1 \bar{\gamma}_3^{-1} (J_{13}) \right\rangle \delta(\gamma_2 \bar{\gamma}_2) (-1)^{J_{12} + \bar{J}_{12} + j_3 + \bar{j}_3 + 1} \cdot \begin{cases} J_{12} & j_3 & J \\ J_{13} & j_2 & j_1 \end{cases} \left\{ \begin{matrix} \bar{J}_{12} & \bar{j}_3 & J \\ J_{13} & \bar{j}_2 & \bar{j}_1 \end{matrix} \right\} \cdot (J_{13}) \sqrt{(J_{12})(\bar{J}_{12})} +$$

$$\sum_{J_{13}} \left\langle \gamma_2 \gamma_3^{-1} (J_{13}) | M | \bar{\gamma}_2 \bar{\gamma}_3^{-1} (J_{13}) \right\rangle \delta(\gamma_1 \bar{\gamma}_1) (-1)^{j_2 + j_3 + \bar{j}_2 + \bar{j}_3} \cdot \begin{cases} J_{12} & j_3 & J \\ J_{13} & j_1 & j_2 \end{cases} \begin{cases} \bar{J}_{12} & \bar{j}_3 & J \\ J_{13} & \bar{j}_1 & \bar{j}_2 \end{cases} \cdot \begin{pmatrix} J_{13} & J$$

$$\sum_{J_{13}} \left\langle \gamma_1 \gamma_3^{-1} (J_{13}) | M | \bar{\gamma}_2 \bar{\gamma}_3^{-1} (J_{13}) \right\rangle \delta(\gamma_2 \bar{\gamma}_1) (-1)^{J_{12} + \bar{J}_{12} + \bar{j}_3 + \bar{j}_2 + j_2} \cdot \begin{cases} J_{12} & j_3 & J \\ J_{13} & j_2 & j_1 \end{cases} \begin{cases} \bar{J}_{12} & \bar{j}_3 & J \\ J_{13} & \bar{j}_1 & \bar{j}_2 \end{cases} \cdot (J_{13}) \sqrt{(J_{12})(\bar{J}_{12})} +$$

$$\sum_{J_{13}} \left\langle \gamma_1 \gamma_3^{-1} (J_{13}) \middle| M \middle| \bar{\gamma}_1 \bar{\gamma}_3^{-1} (J_{13}) \right\rangle \delta(\gamma_1 \bar{\gamma}_2) (-1)^{\bar{J}_{12} + j_3 + \bar{j}_3 + j_2 + \bar{j}_2} \cdot \begin{cases} J_{12} & j_3 & J \\ J_{13} & j_1 & j_2 \end{cases} \begin{cases} \bar{J}_{12} & \bar{j}_3 & J \\ J_{13} & \bar{j}_2 & \bar{j}_1 \end{cases} \cdot (J_{13}) \sqrt{(J_{12})(\bar{J}_{12})}.$$

Процедура эффективного учета поправок второго и высших порядков теории возмущений (взаимодействие частиц через поляризуемый остов и взаимная экранировка квазичастиц) описаны в [2,3]. Отметим лишь, что учет поляризации остова приводит к поправке в радиальных интегралах, а учет взаимной экранировки частиц достигается введением в неэмпирический нулевой гамильтониан дополнительного одночастичного потенциала.

Результаты расчета и выводы. Разработанный нами неэмпирический метод релятивистской теории возмущений был применен в расчетах спектроскопических характеристик Na-подобных сателлитных линий в спектрах Ne —подобных ионов. В таблице 1 приведены значения энергий уровней конфигурации 2 p^5 3s3p, $2p^5$ 3 p^2 в Na-подобном ионе ClVII (в ед. 1000 см $^{-1}$; полный угловой момент: J=3/2). Вследствие сильного перемешивания состояний в промежуточной схеме связи определенные конфигурации мы не указываем, а пишем лишь конфигурации, дающие наибольший вклад. Наши теоретические данные (колонка с в таблице2) сравниваются с данными, полученными на основе расчета в рамках релятивистской теории возмущений с эмпирическим модельным нулевым приближением Иванова-Ивановой-Глушкова [2-4] и данными эксперимента (колонка d). Отметим хорошее согласие наших данных с экспериментальными данными, что свидетельствует о высокой эффективности подхода.

Таблица 1-Энергии уровней конфигурации 2 p^5 3s3p, 2 p^5 3 p^2 в ионе CIVII

		T	
Конфигурация уровня	b	c	d
a1(p'sp'2)a2(p'sp1)a3(p'sp0)	1727	1710	1710
a1(p'sp0)a2(psp1)	1743	1727	1728
a1(p'sp'2)a2(p'sp1)a3(p'sp'1)	1753	1739	1738
a1(psp'1)a2(psp1)a3(p'sp0)	1759	1746	1744
a1(psp'2)a2(psp1)a3(p'sp'2)	1765	1749	1750
a1(p'sp'1)a2(p'sp1)	1812	1802	1805
a1(psp'1)a2(psp1)a3(p'sp'1)	1822	1813	1814
a1(p'ss0)	1643	1640	1641
a1(p'pp0)a2(p'pp'1)a3(p'p'p'0)	1877	1874	
a1(p'pp'1)a2(p'pp0)a3(pp'p'2)	1888	1885	
a1(p'pp'2)a2(p'p'p'0)	1889	1886	
a1(ppp'1)a2(ppp'2)a3(p'pp'1)	1898	1895	
a1(pp'p'2)a2(p'p'p'2)a3(p'p'p2)	1904	1901	
a1(pp'p'2)a2(p'pp'2)a3(p'p'p'2)	1920	1916	
a1(p'p'p'0)a2(p'pp0)a3(ppp'2)	1944	1939	
a1(p'p'p'2)a2(ppp'2)a3(ppp'1)	1975	1978	

Список литературы

- 1. *Сафронова У.И.,.Аглицкий Е.В.*, Спектроскопия автоионизационных состояний.- М.: Атомиздат, 2002.-350С.
- 2. *Glushkov A.V.,Ivanova E.P.*, Theoretical investigation of spectra of multicharged ions of F-like and Ne-like isoelectronic sequences// J.Quant. Spectr. Rad.Transfer.- 1986.-Vol.36,N2.-p.127-145;
- 3. *Ivanova E.P., Ivanov L.N., Glushkov A.V., Kramida A.E.*, Hight order corrections in Relativistic Perturbation Theory with model zero Approximation// Phys.Scr.-1985.-V.32,N4.-P.512-524.
- 4. *Иванова Е.П., .Гогава А.Л.*, Спектры неоноподобных ионов. рассчитанные на основе теории возмущений с эмпирическим нулевым приближением /В кн: Спектроскопия автоионизационных состояний атомов и ионов. Под ред. У.И.Сафроновой.-М.: Наука, 1988.-С.71-88.
- 5. Glushkov A.V., Ambrosov S.V., Loboda A.V., Chernyakova Yu. G., Khetselius O.Yu, Svinarenko A.V. QED calculation of the superheavy elements ions: energy levels, radiative corrections and hyperfine structure for different nuclear models// Nucl. Phys.A.-2004.-Vol. 734.-p.21-24.
- 6. Glushkov A.V., Malinovskaya S.V., Chernyakova Yu.G., Svinarenko A.A. Cooperative Laser-Electron-Nuclear Processes: QED Calculation of Electron Satellites Spectra for Multi-Charged Ion in Laser Field// Int. Journ. Quant. Chem. -2004. -Vol. 99, N5. -P. 889-893.

Сателітна структура спектрів багатозарядних іонів в межах релятивістської теорії збурень. Чернякова Ю.Г.

Робота присвячена теоретичному вивченню сателітної структури Ne-подібних ліній. На основі нового методу релятивістської теорії збурень з модельним нульовим наближенням для трьохквазічастинкових систем виконано чисельний розрахунок Naподібних сателітних ліній в спектрах Ne—подібних іонів.

Ключові слова: релятивістська теорія збурень, сателітні спектри.

The satellite structure of multicharged ions spectra within relativistic perturbation theory. Yu.Chernyakova

The paper is devoted to the theoretical studying of the satellite structure of He- and Ne-like lines. On the basis of new method – relativistic perturbation theory with ab initio model zeroth approximation for three-quasi-particle systems the calculation of spectroscopic characteristics for Na-like satellite lines in spectra of Ne –like ions is carried out.

Keywords: relativistic perturbation theory, satellite spectra.