Hydrodynamic characteristics of gas-liquid systems formed by dispersing the air by means of a glass filter Schott №4

Authors: V.O. Ilyina, V.V. Kostik, Y.G. Chernyakova

Year: 2015

Issue: 19

Pages: 176-181


On the basis of experimental studies and theoretical curves selected, we developed a method that allows to determine the basic hydrodynamic characteristics of gas-liquid systems produced by forcing air through a porous glass filter elements with an air flow of 1.0·10-3 – 1.0·10-1 sm3/(sm2 s) and a different height of the water layer above the bubble generator. Analysis of variance system prepared with distilled water from the purified surfactant (surfactant), found that close to normal size distribution of the bubbles have a fairly wide range of equivalent diameter of 608 microns. Designed collective speed and flow regimes of air bubbles, pop in the transition region changes Reynolds numbers (1 <Re <100). The proposed method of estimating the hydrodynamic characteristics of gas-liquid systems will be useful in the study of physical and chemical laws of flotation extraction of particles using a surfactant, and the results are used to determine the hydrodynamic field bubble, the parameters of which often depends on the efficiency of the flotation nonchemical water purification from suspended particles.

Tags: gas-liquid system; hydrodynamics; the collective rate of floating; the volume-fraction of bubbles


  1. Kul’skij L.A. Osnovy himii i tehnologii vody. [Fundamentals of chemistry and water technology]. Kiev: Nauk. dumka, 1991. 568 p.
  2. Derjagin B.V., Duhin S.S., Ruljov N.N. Mikroflotacija: Vodoochistka, obogashhenie [Microflotation: Water purification, enrichment]. Moscow: Himija, 1986, 112 p.
  3. Ozerskaja V.V., Rybalkina I.S., Filipenko N.L., Medvedeva V.A. Issledovanie processov ochistki hromsoderzhashhih gal’vanicheskih stokov kombinaciej reagentnogo i flotacionnogo metodov [Study treatment processes chromium electroplating wastewater combination of reagent flotation methods]. Vest. Dons. gos. univ. – Bulletin Don State Technical University, 2011, Vol 11, no8(59), issue 2 , pp. 1385,1390.
  4. Ageev M.A., Sviridov V.V, Medjanik N.L. Issledovanie vzaimodejstvij chastichek ti-pografskoj kraski s vozduhom pri flotacionnom oblagorazhivanii makulatury [Investigation of Interactions ink particles with air in the flitation deinking]. IVUZ «Lesnoj zhurnal» – IVUZ Timber journal, 2005, no 4, pp. 125-135.
  5. Sazonova V.F., Bel’dij M.G., Kozhemjak M.A., Perlova O.V. Jeksperimental’noe i teoreticheskoe issledovanie koncentrirovanija ionov polivalentnyh metallov [Experimental and theoretical study of the concentration of polyvalent metal ions paper]. Vest. Odess. nach. univ.. – Bulletin of Odessa National University, 2007, vol 8, issue 3, pp. 41-66.
  6. Karjakin Ju.V. Chistye himicheskie reaktivy. Rukovodstvo k laboratornomu prigotovleniju neorganicheskih preparatov. [Clear chemicals. Guide to the laboratory preparation of inorganic products]. Leningrad: ONTI, 1936. 617 p.
  7. Spargo P.E., Pinfold T.A. Separ. Sci. , 1970 , vol 5 , pp. 619-623.
  8. Bashkirov M.M. K voprosu o fiziko-himicheskih uslovijah generacii puzyrej [On the issue of physical and chemical conditions of the generation of the bubble]. ZhPH – Journal of applied chemistry, 1975, no 3, p. 669-672.
  9. Volkov A.I., Zharskij I.M. Bol’shoj himicheskij spravochnik. [Large chemical reference]. Minsk: Sovremennaja shkola, 2005. 608 p.
  10. Tihomirov V.K. Peny. Teorija i praktika ih poluchenija i razrushenija. [Foam. Theory and practice of their production and destruction]. Moscow: Himija, 1983, 264 p.
  11. Okazaki S. Bull. Chem. Soc. Jap., 1964, vol 37, no 2 , pp. 144-150.
  12. Ruljov N.N. Kollektivnaja skorost’ vsplyvanija puzyr’kov [Collective rate of rising bubbles]. Koll. zhurn. – Colloid Journal, 1977, vol 39, no 1 , p. 80-85.


Download full text (PDF)