Testing of parameterizations of turbulence of the boundary layer of the atmosphere over the ocean surface

Authors: Ivanova E. V.

Year: 2017

Issue: 22

Pages: 45-60

Abstract

The article is devoted to testing of parameterizations of turbulent processes in the atmospheric boundary layer on the basis of different methods of closure of differentiation equations system over the ocean surface which is currently used in numerical weather forecast models. These methods include models from the first up to 1.5th closure orders. The models of the first order closure include those having diagnostic equations for turbulence coefficients which were obtained from the models of high order closure requiring use of kinetic energy of turbulent vertical velocity fluctuations subject to availability of a stable boundary layer of the atmosphere. Verification of successful use of turbulence parameterization schemes is made on the basis of actual material consisting of the annual sample data of standard meteorological and aerological observations conducted during the first global experiment on the ocean station “C” in 1978-1979. Quantitative fit with field data was evaluated using coefficients of correlation and difference for each of the seasons and for the whole year. Qualitative analysis was carried out on the basis of comparison of averaged profiles for each month of the year and the time course of meteorological values at reference levels.

The work includes check of reproduction of vertical profiles of wind speed and air temperature modulus in the atmospheric surface layer. Characteristics of the latter are obtained using the parameterization of Kazakov-Lykosov which implies merging of universal functions of Businger-Dyer to avoid rupture of the latter when dealing with cases of unstable stratification.

Tags: boundary layer; meteorological values; one-dimensional model; order of closure; parameterization; turbulence; граничний шар; метеорологічні величини; одновимірна модель; параметризация; порядок замикання; турбулентність

Bibliography

  1. Hortal M. Aspects of the numerics of the ECMWF model. Recent developments in numerical methods for atmospheric modelling, Procs. of the ECMWF Seminar 7–11. September 1998, Reading, UK: 1999, P. 50.
  2. Dandou A., Tombrou M., Kalogiros J., Bossioli E., Biskos G., Mihalopoulos N., Coe H. Investigation of Turbulence Parametrization Schemes with Reference to the Atmospheric Boundary Layer Over the Aegean Sea During Etesian Winds. Boundary-Layer Meteorol., 2017, 164, no 2, pp. 303-329.
  3. Adriano Battisti, Otávio C. Acevedo, Felipe D. Costa, Franciano S. Puhales, Vagner Anabor, Gervásio A. Degrazia. Evaluation of Nocturnal Temperature Forecasts Provided by the Weather Research and Forecast Model for Different Stability Regimes and Terrain Characteristics. Boundary-Layer Meteorol., 2017, 162, no 3, pp. 523-546.
  4. Ben Yang, Yun Qian, Larry K. Berg, Po-Lun Ma, Sonia Wharton, Vera Bulaevskaya, Huiping Yan, Zhangshuan Hou, William J. Shaw. Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model. Boundary-Layer Meteorol,. 2017, 162, no 1, pp. 117-142.
  5. Nielsen-Gammon JW, Hu X-M, Zhang F, Pleim JE Evaluation of planetary boundary layer scheme sensitivities for the purpose of parameter estimation. Mon Weather Rev, 2010, 138, no 9, pp. 3400–3417.
  6. Atlanticheskiy i Indiyskiy okeany: atlas okeanov [The Atlantic and Indian oceans: Atlas of the oceans]. Saint-Petersburg, 1977.
  7. Kazakov O. L., Іvanova O. V. Radiation fluxes is a key factor in the interaction between the atmosphere and the ocean. Two-way flows. Vìsn. Odes. derž. ekol. unìv. – Bull. of OSENU, 2009, no 8, pp. 168-181. (In Ukrainian). (http://bulletin.odeku.edu.ua/uk/category/2009-uk/08-uk/#post-4795)
  8. Zhao C, Liu X, Qian Y, Yoon J, Hou Z, Lin G, McFarlane S, Wang H, Yang B, Ma PL, Yan H, Bao J A sensitivity study of radiative fluxes at the top of atmosphere to cloud-microphysics and aerosol parameters in the community atmosphere model CAM5. Atmos Chem Phys, 2013, 13, no 21, pp. 10969–10987.
  9. Bénard P., Vivoda J., Masek J., Smoliková P., Yessad K., Smith Ch., Brozková R., Geleyn J.-F. Dynamical kernel of the Aladin NH spectral limitedareamodel: Revised formulation and sensitivity experiments, Quart. J. Roy. Meteorol. Soc., 2010, Vol. 136, рр. 155–169.
  10. Girard C., Benoit R., Desgagné M. Finescale topography and the MC2 dynamics kernelю. Mon. Weather Rev, 2005, Vol. 133, рр. 1463– 1477.
  11. Tolstykh M. A. Polulahranzhevaya model’ atmosfery PLAV [Semi-Lagrangian model of the atmosphere]. The Hydromet-centre of Russia, Institute of numerical mathematics RAS, 2010, 24 р.
  12. Tolstykh M. A., Zhelen Zh.-F., Volodin E. M., Bogoslovskiy N. N., Vil’fand R. M., Kiktev D. B., Krasyuk T. V., Kostrykin S. V., Mizyak V. G., Fadeev R. Yu., Shashkin V. V., Shlyaeva A. V., Ezau I. N., Yurova A. Yu. Razrabotka mnogomasshtabnoy versii global’noy modeli atmosfery PLAV [To develop a multiscale version of the global model of the atmosphere PLAV]. Meteorologiya i gidrologiya – Meteorology and Hydrology, 2015, no 6, pp. 25-35.
  13. Farah Kanani-Sühring, Siegfried Raasch Enhanced Scalar Concentrations and Fluxes in the Lee of Forest Patches: A Large-Eddy Simulation Study. Boundary-Layer Meteorol,. 2017, 164, no 1, pp. 1-17.
  14. David E. Jahn, Eugene S. Takle, William A. Gallus Jr. Improving Wind-Ramp Forecasts in the Stable Boundary Layer. Boundary-Layer Meteorol., 2017, 163, no 3, pp. 423-446.
  15. Shamsoddin Sina, Porté-Age Fernando. Large-Eddy Simulation of Atmospheric Boundary-Layer Flow Through a Wind Farm Sited on Topography. Boundary-Layer Meteorol.. 2017, 163, no 1, pp. 1-17.
  16. Englberger Antonia,·Dörnbrack Andreas. Impact of Neutral Boundary-Layer Turbulence on Wind-Turbine Wakes: A Numerical Modelling Study. Boundary-Layer Meteorol., 2017, 162, no 3, pp. 427-449.
  17. George H. Bryan,· Rochelle P. Worsnop, Julie K. Lundquist, Jun A. Zhang. A Simple Method for Simulating Wind Profiles in the Boundary Layer of Tropical Cyclones. Boundary-Layer Meteorol., 2017, 162, no 3, pp. 475-502.
  18. Malbakhov V. M., Shlychkov V. A. Numerical modeling of a coherent structures ensemble with convection in the atmospheric boundary layer. Bull. Novosib. Comput. Cent. Ser. Numer. Model. Atmos., Ocean and Environ. Stud, 2001, no 7, pp. 35-41.
  19. Letzel Maraus Oliver, Raosch Siegfried. Large eddy simulation of thermally induced oscillations in the convective boundary layer. J. Atmos. Sci., 2003, 60, no 18, pp. 2328-2341.
  20. Zilitinkevich S. S., Esau I. N. On integral measures of the neutral barotropic planetary boundary layer. Boundary-Layer Meteorol., 2002, 104, no. 3, pp. 371 – 37
  21. Garbaruk A. V., Strelets M. Kh., Shur M. L. Modelirovanie turbulentnosti v raschetakh slozhnykh techeniy [Simulation of turbulence in complex flows calculations]. Saint-Petersburg: Publishing house Polytechnic University, 2012, 88 р.
  22. Hrebtov M., Hanjali´c K. Numerical Study of Winter Diurnal Convection Over the City of Krasnoyarsk: Effects of Non-freezing River, Undulating Fog and Steam Devils. Bound-ary-Layer Meteorol., 2017, 163, no. 3, pp. 469-495.
  23. Cuxart J., Holtslag A.A.M., Beare R.J., Bazile E., Bel-jaars A. etc. Single-column model intercomparison for a stably stratified atmospheric boundary layer. Boundary-Layer Meteorology, 2006, no. 118, pp. 273-303.
  24. Weng Wensong, Taylor Peter A. On modeling the one-dimensional atmospheric boundary layer. Bounday-Layer Meteorol., 2003, 107, no 2, pp. 371-400.
  25. Lech Łobocki Turbulent Mechanical Energy Budget in Stably Stratified Baroclinic Flows over Sloping Terrain. Boundary-Layer Meteorol., 2017, 164, no. 3, pp. 353-365.
  26. David E. Jahn, Eugene S. Takle, William A. Gallus Jr. Wind-Ramp-Forecast Sensitivity to Closure Parameters in a Boundary-Layer Parametrization Scheme. Boundary-Layer Meteorol., 2017, 165, no. 3, pp. 475-490.
  27. Lykosov V. N., Glazunov A. V., Kulyamin D. V., Mortikov E. V., Stepanenko V. M. Superkomp’yuternoe modelirovanie v fizike klimaticheskoy sistemy [Supercomputer simulation in physics of the climate system]. Moscow: Moscow university`s Publ., 2006, 295 p.
  28. Zilitinkevich S. S., El’perin T., Kliorin N., Rogachevskiy I. The closure of the Reynolds equation for a stable stratified turbulent flows in the atmosphere and ocean. Ukr. gìdrometeorol. ž. – Ukr. hydrometeor. j., 2009, no. 4, pp. 75-102. (In Russian). (http://uhmj.odeku.edu.ua/uk/category/2009-uk/04-uk/#post-4933)
  29. Cuxart J., Holtslag A.A.M., Beare R.J., Bazile E., Beljaars A. etc. Single-column model intercomparison for a stably stratified atmospheric boundary layer. Boundary-Layer Meteorology, 2006, no. 118, pp. 273-303.
  30. Demchenko P. F. Parameterization of the planetary boundary layers height during the transition to the stable stratification. Mat. modelirovanie protsessov v pogranichnykh sloyakh atmosfery i okeana – Mathematical modelling of the processes in the atmospheric and oceanic boundary layers. Moscow, 1989, pp. 23 – 26. (In Russian)
  31. Chimonas G. Steps, waves and turbulence in the stably stratified planetary boundary layer. Boundary-Layer Meteorol., 1999, 90, no. 3, pp. 397-421.
  32. Mitzeva Rumjana, Gerova Gerdana. Numerical study of the heat and moisture exchange in the morning boundary layer. Idojaras, 2000, 104, no 2, pp. 109 – 122.
  33. Kazakov A. L., Ivanova E. V. Testing of an atmospheric boundary layer`s the numerical model on the basis of the Wangara experiment. Vìsn. Odes. derž. ekol. unìv. – Bull. of OSENU, 2010, no 10, pp. 97-110. (In Russian) (http://bulletin.odeku.edu.ua/uk/category/2010-uk/10-uk/#post-4300)
  34. Monin A. S., Yaglom A. M. Statisticheskaya gidromekhanika [Statictical fluid mechanics]. Saint-Petersburg: Hydrometeorology Publ., 1992, vol. 1: Turbulence theory, 694 p.
  35. Kazakov A. L. On the paramerterization of the atmosphere-underlying surface interaction in the numerical modelling og the atmospheric processes. Trudy ZapSibNII – Proceedings West Siberian research Institute. Moscow: Hydrometeorology Publ., 1982, issue 5, pp. 3-20. (In Russian)
  36. Laykhtman D. L. (Ed.) Dinamicheskaya meteorologiya. Teoreticheskaya meteorologiya [Dynamic meteorology. Theoretical meteorology]. Saint-Petersburg: Hydrometeorology Publ., 1976, 607 p.
  37. Marchuk G. I. Chislennoe reshenie zadach dinamiki atmosfery i okeana [Numerical solution of the atmospheric and oceanic dynamics problems]. Saint-Petersburg: Hydrometeorology Publ., 1974, 303 p.
  38. Lykosov V. N., Platov G. A. The numerical simulation of the atmospheric boundary layer over EAZO. Matematicheskoe modelirovanie protsessov v pogranichnykh sloyakh atmosfery i okeana – Mathematical modelling of the processes in the atmospheric and oceanic boundary layers. Moscow: DCM AS-USSR, 1988, pp. 66-93. (In Russian)
  39. Kazakov A. L., Lykosov V. N. To the question of the heat- and moisture exchange parameterization during storms in the relation to the problems of the atmosphere and ocean interac-tion. Meteorologiya i gidrologiya – Meteorology and Hydrology, 1980, no 8, pp. 58-64. (In Russian)
  40. Kolinko A. V. The statictical structure of large-scale oceanographic fields on the Newfoundlander energy landfill. Meteorologiya i gidrologiya -Meteorology and Hydrology, 1990, no 8, pp. 102–107. (In Russian)
  41. Atlanticheskiy i Indiyskiy okeany: atlas okeanov [The Atlantic and Indian oceans: Atlas of the oceans]. Saint-Petersburg, 1977.
  42. Kazakov O. L., Іvanova O. V. Radiation fluxes is a key factor in the interaction between the atmosphere and the ocean. Two-way flows. Vìsn. Odes. derž. ekol. unìv. – Bull. of OSENU, 2009, no 8, pp. 168-181. (In Ukrainian). (http://bulletin.odeku.edu.ua/uk/category/2009-uk/08-uk/#post-4795)
Download full text (PDF)